
Towards a Rewriting Framework
for Textual Entailment

Vivek Nigam1

Centro de Informática
Universidade Federal da Paráıba

João Pessoa, Brazil

Valeria de Paiva2

NL and AI Research Lab
Nuance Communications

Sunnyvale, USA

Abstract

Recent years have seen a surge of interest in the problem of textual inference, that is, automatically deter-
mining whether a natural-language hypothesis can be inferred from a given premise. This surge has been
followed by an interest from the logical community in finding suitable logics for textual inference. The
Textual Inference Logic (TIL) is one of these logics. This paper details our first steps towards a rewrite
framework for textual inference using TIL. We implement our framework in the computational tool Maude
and demonstrate by example that it can be used for textual inference.

Keywords: Textual Inference, Textual Inference Logic, Maude, Rewrite Systems, automated rewriting.

1 Introduction

The aim of computational semantics is to find techniques for automatically con-

structing semantic representations for expressions of human language, representa-

tions that can be used to perform inference. The most basic criterion for success

as far as a semantics of natural language sentences is concerned is that of textual

entailment, which is of establishing when sentences follow from others, when they

are consistent with each other, and when they contradict each other.

Traditional formal semantic analyses of human language typically presuppose

formalisms with high-expressive power (for example, higher-order logic augmented

1 Email: vivek.nigam@gmail.com
2 Email: valeria.depaiva@gmail.com

Preprint submitted to Electronic Notes in Theoretical Computer Science 24 July 2014

mailto:vivek.nigam@gmail.com
mailto:t-valeria

with modalities) but in computational semantics some variant of first-order logic is

generally preferred. First-order logic is able to deal (at least to a good approxima-

tion) with a wide range of interesting linguistic phenomena and has much-better

computational properties. First-order logic offers an attractive compromise between

the conflicting demands of expressiviness and inferential effectiveness. However,

other choices, especially variants of description logics, which are even better-behaved

computationally could also be considered.

Recent years have seen a surge of interest in the problem of textual inference,

that is, automatically determining whether a natural-language hypothesis can be

inferred from a given premise. A broad spectrum of approaches have been explored,

ranging from shallow-but-robust to deep-but-brittle, especially in the recognizing

textual entailment community [8]. Up to now, the most successful approaches have

used fairly impoverished semantic representations, relying on measures of lexical

or semantic overlap, pattern-based relation extraction, or approximate matching of

predicate-argument structure.

One of us has worked with a system that calculates textual inferences as part

of the implemented system Bridge, developed at Xerox PARC. The implemented

system is described in a collection of papers, including for instance [4], while the

logical system itself is described in [5, 10, 12]. The system Bridge is a monolithic

system, where several hard problems in Natural Language Processing (NLP) are

intertwined: thus one needs to get the right parse, the right entities recognized and

typed appropriately, the right disambiguation, the right selectional restrictions, etc.

The logical system TIL (Textual Inference Logic) tries to abstract away from

the difficulties of creating the logical representations of the sentences to concentrate

on the logical difficulties of reasoning with (a particular kind of) representations.

The system TIL is a neo-Davidsonian system [15], a small extension of a version of

First-Order Logic (FOL) with contexts in the style of J. McCarthy [16]. TIL is

one of the systems associated with Natural Logic and it distinguishes itself by the

unorthodox treatment of quantification in terms of instantiation of concepts within

(McCarthy-style) contexts. This mechanism of quantification, as well as the specific

kinds of concepts and roles described, are informed by the modeling of negation and

other intensional phenomena, ubiquitous in natural language.

The work described in this note continues the work on reasoning with TIL rep-

resentations, using different tools for the reasoning and assuming that the represen-

tations provided by the NLP module are correct. This decision and some discussion

on how to go about finding new NLP tools can be found in [11]. We use rewrit-

ing techniques to reason about our representations (as did the Bridge system

beforehand), but we use a generic and well-known framework for rewriting, Maude,

instead of one dedicated to linguistic representations [7].

The basic idea is that a representation R entails a representation R′, (R ` R′)

if the representation R can be rewritten to R′, using the automated system. The

representation R consists of the representation of one or more assertions, as seen in

the examples below. As a special case we have R ` ⊥, where the representation R

entails falsehood, meaning that R is inconsistent, corresponding, for example, to to

2

the sentences e.g. The crow slept and The crow did not sleep.

This paper is organized as follows. Section 2 reviews the representation of sen-

tences as TIL assertions, while Section 3 reviews TIL inference. Section 4 introduces

our rewriting framework for textual entailment. It also describes how instances of

our framework can be implemented in Maude so to prove the textual entailment of

sentences. We carried out some (preliminary) experiments, which are also described

in Section 4. Finally, we conclude by poitning out to future work in Section 5.

2 TIL Representations

It is traditional for logics of Knowledge Representation to be fragments of first-order

logic (FOL). By contrast, it is traditional for logics for natural language semantics

to be higher-order intensional logics. Our logic has concepts, which make it look

like a “description logic”, that is, a fragment of FOL, but it also has contexts, a

possible-worlds-like construct that, we hope, is expressive enough for the needs of

natural language.

The basic syntactic notions in TIL are very different from the ones in FOL.

Following the model of Description Logics [3] we have concepts, subconcepts and

roles. Some of our reasons for using a concept denoting analysis instead of an

individual denoting analysys when mapping noun phrases to logic are discussed

in [6]. The main reasons are being able to deal with non-existent entities (for

example when mapping “Negotiations prevented a strike” we do not want to say

that there exists negotiations N and there exists a strike S and prevented(N,S),

as the prevented strike does not really exist in the actual world) and accounting for

downward monotonicity entailments.

But unlike description logic where formulas are build from concepts created by

the modelling process via logical operators similar to the ones in FOL, in TIL we

have concepts from a given ontology O that is a parameter of the system. For the

ontology O you can think of Cyc, KM, SUMO or as we will do here WordNet.

Instead of variables we have skolem constants that carve out a subset of the

concept that we are describing. For example, if our sentence is The crow slept we

will have a skolem constant corresponding to the predicate for ‘sleep’ (sleep-2) one

for the predicate corresponding to ‘crow’ (crow-1), a role connecting the two skolem

constants, (role(sb,sleep-4,crow-1)) and a role to express the cardinality of the

noun, singular (sg), as follows:

a crow slept.

Conceptual Structure:

role(cardinality_restriction,crow-1,sg)

role(sb,sleep-4,crow-1)

subconcept(crow-1,[crow#n#1,crow#n#2,,brag#n#1])

subconcept(sleep-4,[sleep#v#1,sleep#v#2])

Contextual Structure:

3

instantiable(crow-1,t)

instantiable(sleep-4,t)

top_context(t)

Temporal Structure:

trole(when,sleep-4,interval(before,Now))

Conceptual Structure, Contextual Structure and Temporal Structure are

pretty-printing labels to help the reader. From now on we will suppress all the infor-

mation about temporal structure, as are are not dealing with it, yet. Similarly we

will only consider one primitive concept for each skolem. This corresponds to doing

manual disambiguation and we would like to relax this constraint as soon as the ba-

sic inferences are in place. The important assertion is role(sb,sleep-4,crow-1)

which corresponds to the information that the subject of the sleep-4 event is the

crow crow-1. The contextual structure is not very important in this simple exam-

ple, where we only have one context, the top or true context t. But the contextual

structure is what makes this logic an extension of FOL.

For example, for a sentence like Ed knew that the crow slept. we have two

contexts, the true context and the context of what was known by Ed, the context

named ctx(sleep-8).

Ed knew that the crow slept.

Conceptual Structure:

alias(Ed-0,[Ed])

role(cardinality_restriction,Ed-0,sg)

role(cardinality_restriction,crow-6,sg)

role(prop,know-1,ctx(sleep-8))

role(sb,know-1,Ed-0)

role(sb,sleep-8,crow-6)

subconcept(Ed-0,[male#n#2])

subconcept(crow-6,[crow#n#1])

subconcept(know-1,[know#v#1])

subconcept(sleep-8,[sleep#v#1])

Contextual Structure:

context(ctx(sleep-8))

context(t)

context_lifting_relation(veridical,t,ctx(sleep-8))

context_relation(t,ctx(sleep-8),crel(prop,know-1))

instantiable(Ed-0,t)

instantiable(crow-6,ctx(sleep-8))

instantiable(crow-6,t)

instantiable(know-1,t)

instantiable(sleep-8,ctx(sleep-8))

4

instantiable(sleep-8,t)

Corresponding to a single formula in FOL, in TIL we have a collection of as-

sertions that, read conjunctively, correspond to the semantics of a (fragment of a)

sentence in English.

Concepts in TIL are similar to Description Logic concepts in that they corre-

spond pre-theoretically to sets of objects that satisfy a certain property, like pred-

icates in FOL. Unlike concepts in description logics, our concepts are not always

unary predicates (we have concepts for love,give for example). We have two kinds

of concepts, primitive concepts extracted from an idealized version of the chosen on-

tology and constructed-on-the-fly concepts, which are always sub-concepts of some

primitive concept. These second kind of concepts are dynamic, created by the im-

plemented NLP system when we feed it English sentences. These dynamic concepts

are created and placed in the hierarchy/ontology in use, as best as we can, at run

time. We assume that our concepts are as fine or as coarse as the sentences that we

deal with require. We also assume that our ontology is not circular or inconsistent.

(In practice it is hard to show that this is indeed the case, especially with more

expressive ontologies.)

Concepts are related to other concepts via roles as seen above. Deciding which

roles will be used with which concepts is a major problem in computational linguis-

tics. We bypass this problem by assuming that roles are assigned in a consistent,

coherent and maximally informative way by the NLP module that we assume ap-

propriate for the task at hand.

One crucial feature of the system TIL is its use of contexts and its approach to

modelling negation, implication and quantification as well as propositional attitudes

and other intensional phenomena. There is a first initial context (written as t) that

corresponds roughly to what the author of the sentence takes the world to be like.

More precisely, in an interpretation of a sentence, the top context corresponds to

what the author of the sentence is committed to, with respect to what the world

she is describing is like. But since this circumlocution is awkward, we will usually

talk about this top level context as the ‘true context’. From a practical perspective,

contexts in our logic were conceived as syntactic ways of dealing with intensional

phenomena, including negation and non-existent entities. They support making

existential statements about the existence and non-existence in specified possible

worlds of entities that satisfy the intensional descriptions specified by our concepts.

Traditional propositional attitudes predicates relate contexts and concepts in our

logic. Thus a concept like ‘knowing’ or ‘believing’ or ‘saying’ introduces a context

that represents the proposition that is known, believed or said. Contexts are used

to ‘fence-off’ concepts and corresponding roles. Contexts also allow us to localize

reasoning: the existence of the knowing event and of Ed are supposed to happen

in the true world, while the sleeping of the crow is only supposed to happen in the

world of the things known by Ed. In some cases (e.g. in the case of the verb know

that) we can percolate up the truth of assertions in inner contexts up to the outside

context, by assuming that what is known, must be true. In many cases we cannot.

5

The happening or not of events is dealt with by the instantiability/uninstantiability

predicate that relates concepts and contexts. Note that all the reasoning to deal

with moving assertions out of inner contexts to the top one, to construct the mean-

ing of the sentences, is at the moment dealt with by the NLP module. In this work

we simply assume that the representations are correctly constructed. Eventually we

want our system to calculate which assertions can be truthfully percolated, which

ones cannot, but this should be in a second phase of this work.

While we may be prepared to make the simplifying assumption that if ‘X is

known’ than ‘X is true’, we certainly do not want to make the assumption that if

‘X is said’ than ‘X is true’. We say that the context introduced by a knowing event

is veridical with respect to the initial context t, while the context introduced by a

saying event is averidical with respect to the initial context. Negation introduces

a context that is anti-veridical with respect to the original context. Having intro-

duced notions of veridicality, antiveridicality and averidicality between contexts we

have expanded the expressive power of our language of representations consider-

ably. Thus we have a fairly general mechanism of contexts (these can clearly be

iterated), which can represent some positive and some negative information. Simi-

larly to McCarthy’s logic we also have ‘context lifting rules’ that allow us to transfer

veridicality statements between contexts, in a recursive way. A precise description

of the algorithm explaining how these context lifting rules work for specific classes

of verbs (marked in the lexicon) can be found in [18].

3 Textual Inference

The reason for introducing event concepts was the fact that they make some infer-

ences that can be complicated in other semantical traditions very easy. For example

it is obvious how to obtain Ed arrived in the city from the sentence Ed arrived in

the city by bus. This inference corresponds simply to conjunction dropping in our

logic. But of course there is much more to textual inference than simply dropping

of conjuncts.

Inference in TIL is very rudimentary. We can ‘drop clauses’ like in most event

semantics. From the sentence Ed walked and Mary talked we are able to infer both

Ed walked and Mary talked by simply forgetting the respective clauses in the original

representation.

We can do trivial inferences like identity and we can compose derivations:

s → s

s → t s → r

r → t

Lastly we can conclude that assertions are inconsistent together, for example Ed

slept and Ed did not sleep will provide us with instantiable(sleep-0, t) and

uninstantiable(sleep-2, t), and when sleep-0 and sleep-2 are unified we

obtain an inconsistency.

Monotonicity Reasoning we will begin with some intuitive semantic relations

that NL expressions stand in, as the examples below show:

6

Nina has a canary, canary v bird

Nina has a bird

Ed kissed Nina, kiss v touch

Ed touched Nina

Every carp is a fish, carp w koi

Every koi is a fish

She didn’t give him a bird, bird w canary

She didn’t give him a canary

But note that the clauses we construct also satisfy the usual monotonicity pat-

terns, both in positive and in negative form. Thus

Ed arrived in the city by bus

Ed arrived in the city

Ed did not arrive in the city

Ed did not arrive in the city by bus

while Ed did not arrive in the city by bus does not entail that Ed did not arrive in

the city. Similarly a limited amount of ‘going up and down the taxonomy’ can be

accounted for this way, using monotonicity markers.

Ed arrived in the city, Ed v person

A person arrived in the city

Ed arrived in Rome, Rome v city

Ed arrived in a city

Implicative commitments Some previous work has concentrated efforts into un-

covering, marking and using the context structure of the logic to provide inferences

associated with kinds of verbs with implicative behavior. This work is discussed in

[18] and [9]. Here we simply give an example of each one of the classes of “implicative

commitments” behavior described by Nairn, Condoravdi and Karttunen.

There are six such classes, depending on whether positive environments are taken

to positive or negative ones. Thus for example the verb “manage” takes positive

predicates (e.g “Ed managed to close the door” → “Ed closed the door”) to positive

predicates and negative ones (“Ed didn’t manage to close the door” → “Ed didn’t

close the door”). By contrast the verb “forget (to)” inverts the polarities: “Ed

forgot to close the door” → “Ed didn’t close the door” and “Ed didn’t forget to

close the door” → “Ed closed the door”.

More complicated are the verbs that only show their implicative behavior either

in positive or negative situations. For example we have positive implicatives like

the verb “force (to)” takes positive polarities and produces positive polarities (e.g

“Ed forced Mary to paint” → “Mary painted”), but if “Ed didn’t force Mary to

paint” we cannot tell whether Mary painted or not. While “refuse (to)” only works

to produce negative polarity (e.g. ‘Mary refused to sing” → “Mary did not sing”).

Accommodating this fine-grained analysis into the traditional logic description is a

very interesting topic for further work. In this note we simply assume that our black

box does this kind of reasoning that is necessary to construct the representations.

4 A Rewrite Framework for Textual Inference

In this note we consider a implementation, using the traditional rewriting system

Maude to reason about the logical representations produced by the NLP module we

are considering. We hand-correct the representations we are given by the NLP mod-

7

ule, as the goal here is not to obtain correct representations, but to work logically

with correct representations.

4.1 Using Maude

The Maude system is an implementation of rewriting logic[17] developed at SRI

International. It is similar in its general approach to Joseph Goguen’s OBJ3 imple-

mentation of equational logic, but based on rewriting logic rather than order-sorted

equational logic, and with a heavy emphasis on powerful meta-programming based

on reflection, but we do not use these facillities.

Maude modules (rewrite theories) consist of a term-language plus sets of equa-

tions and rewrite-rules. Terms in a rewrite theory are constructed using operators

(functions taking 0 or more arguments of some sort, which return a term of a specific

sort). Operators taking 0 arguments are considered constants, and one constructs

their term-language by these simple constructs.

Roughly speaking, a rewrite theory is a triple (Σ, E,R), with (Σ, E) an equa-

tional theory with Σ a signature of operations and sorts, and E a set of (possibly

conditional) equations, and with R a set of (possibly conditional) rewrite rules.

Equational semantics is obtained as the special case in which R = ∅, so we only

have the semantic equations E.

The logical predicates of our natural languages representations are not too nu-

merous, we have (sub)concepts, roles, contexts and a few relations between these.

But the concepts that the representations use would be in a useful system in the

order of 135 thousand, which is the number of synsets in WordNet[14], our putative

ontology (Any other ontology worth using for real language understanding would

probably be of the same order of magnitude.) This number of concepts is too large

for most automated deduction systems, so instead of facing the challenge of scalabil-

ity right at the outset of the project, we opted for considering a drastically reduced

vocabulary, to check the feasibility of our ideas and the robustness of our tools.

Also while Maude is free software, and tutorials are available online, our black

box that produces representations for sentences is not, so we are using for this

experiment the public semantic representations available from the the Pargram

Project of a short story with only 11 sentences. We now describe the domain of our

experiment.

4.2 Rewrite Framework

We introduce the rewrite framework for textual inference using Maude notation. We

believe that the notation is self-explanatory. For more information on this notation,

we also point out to Maude’s documentation [1]. Finally, the Maude implementation

of this framework can be found at [2].

Basic Sorts

The basic sorts (or types) that we use in our implementation are Relations,

SBasic and UnifSet. TIL relations, such as crow v bird, belong to the sort

8

Relations, while concept and contextual assertions, such as instantiable(drink-0,t)

belong to the SBasic statement basic sort. Finally, the third basic sort, UnifSet,

contains unification of skolem constants, such as crow-6 := bird-1. This last sort

is necessary for textual inference, namely, for unifying skolem constants, as described

below in the rewrite rules.

Configurations

We specify the textual inference queries using configurations. These are defined

as follows using Maude notation

op { _ | _ | _ | _ } : SBasic UnifSet Relations SBasic -> Conf .

This command specifies that a configuration is a tuple with four components. The

first component of sort SBasic specifies the premises of the textual inference prob-

lem in the form of conceptual and contextual assertions. We call these the premise

assertions. The second component of sort UnifSet keeps track of the unification of

skolem variables that have been performed. Initially it is empty, specified by the

operator none. The third component of sort Relations specifies the conceptual

relations, inherited from the parameter ontology. Finally, the fourth component of

sort SBasic specifies the goal sentence that we would like to infer also in the form

of conceptual and contextual assertions. We call these the goal assertions.

The following equation specifies that a configuration is inconsistent if its premise

asserts that the same skolem constant is both instantiable, represent by the operator

ins, and noninstantiable, represented by the operator nIns, in the top context.

eq { ins(sk1, top) nIns(sk1, top) pre | unifs | rels | goal } = inconsistent .

Thus any configuration with conflicting assertions will be rewritten to the con-

stant inconsistent.

Sample of Rewrite Rules

The base case is when there are no further assertions to prove. In this case, then

we return a token for success and the unifications used. This is specified by the

following rewrite rule, where none denotes the empty set:

rl[REDUCTION-FINAL]: { pre | uni | rels | none } => succ(uni) .

The following rule specifies that a goal assertion, bas, that is already in the set

of premise assertions has been solved and therefore can be removed from the goal

assertions.

rl[REDUCTION]:

{ bas pre | uni | rels | bas goal } => { bas pre | uni | rels | goal } .

The following rule infers one case (of several other cases that are elided here)

when two skolem constants, represented in Maude by using the sk operator, can be

unified.

crl[UNIFICATION-INS]:

{ ins(sk1, ctx) subconcept(sk1, str1) pre | uni | rels

9

| ins(sk2, ctx) subconcept(sk2, str1) goal } =>

{ pre1 | ([sk1 := sk2]) uni | rels

| ins(sk2, ctx) subconcept(sk2, str1) goal }

if pre1 := (ins(sk1, ctx) subconcept(sk1, str1) pre) [sk1 -> sk2] .

This rule specifies that two skolems sk1 and sk2 can be unified only if they are

associated to the same concept denoted by the string str1. If this is the case, then

a new unification clause, [sk1 := sk2] is created and moreover the substitution

[sk1 -> sk2], which replaces sk1 by sk2, is applied to the premise assertions.

We can refine the conditions for unifying two skolem constants by using TIL

ontological relations. Consider the following rewrite rule:

crl[UNIFICATION-INS-TBOX]:

{ ins(sk1, ctx) subconcept(sk1, str1) pre | uni

| (str1 << str2) rels | ins(sk2, ctx) subconcept(sk2, str2) goal } =>

{ pre1 | ([sk1 := sk2]) uni | (str1 << str2) rels

| ins(sk2, ctx) subconcept(sk2, str2) goal }

if pre1 := (ins(sk1, ctx) subconcept(sk1, str1) pre) [sk1 -> sk2] .

It is similar to the previous rewrite rule. However, this rule allows for the unification

of the skolem constants sk1 and sk2, although the first is a subconcept of str1 and

the second of str2, which may be different. However, from the assertion str1 <<

str2, which is represented by str1 v str2 in the logic, we have that the concept

str2 is more general than the concept str1 and therfore the substitution [sk1 :=

sk2] is sound.

We can also infer new relations that may be used to infer more unifications. The

following rewrite rule is a forward-chaining rule on TIL relations.

crl[FORWARD-CHAIN]:

{ pre | uni | rel1 rel2 rels | goal } =>

{ pre | uni | rel1 rel2 rel3 rels | goal }

if rel3 := infer(rel1, rel2)

/\ (not mem(rel3, rels)) /\ (not (rel3 == rel1)) /\ (not (rel3 == rel2)) .

It specifies that if there are two relations rel1, rel2 in the configuration, and these

can infer a new relation rel3, that is not in the set of relations, and is not the same

as the original two relations, then rel3 should be added to the set of relations of

the configuration. This is specified by the condition where mem is the membership

relation.

One can specify elaborate inference systems for TIL relations. We implemented

the constructive fragment of the inference system described in [13].

Proving Textual Entailment

Having described the infrastructure required, we are ready to prove in Maude

that from a set of TIL relations R, some premise sentence(s) represented by a set

of assertions P entails some goal sentence(s) represented by a set of assertions C.

For this, we construct the corresponding configuration the = {P | none | R | C}

10

Theorem 1 2 3 4 5 6 7

Number of States 10 5 429 23 33 96 22

Table 1
Summary of the results of experiments carried out. In all experiments, a single solution was found.

and use the following search command in Maude:

search the =>* succ(u:UnifSet) .

which will start searching using the rewrite rules defined to see whether it can prove

the entailment. Maude uses a breadth-first search procedure.

Notice that all the rewrite rules that we have shown are clearly sound. Thus if a

solution is found by Maude’s the search engine (and assuming that Maude’s search

engine is correct) then it is indeed the case that the premise sentence(s) entail the

conclusion sentence.

4.3 Proposed “theorems” and experimental results

In our experimental results, we proved the following textual entailment relations:

1. {a crow was thirsty.} |- {a thirsty crow}

2. {a thirsty crow} |- {a crow}

3. {ed arrived and the crow flew away.} |- {the crow flew away}

4. {ed knew that the crow slept |- the crow slept}

5. {ed did not forget to force the crow to fly} |- {the crow flew}

6 {the crow came out in search of water} |- {the crow came out}

7. {a crow was thirsty} |- {a bird was thirsty}

Table 1 summarizes the number of states that Maude needed to traverse in

order to prove the corresponding theorem. In all experiments, only a few number

of states (less that thousand states) were traversed and Maude was able to prove

each theorem almost instanteneously. The only theorem that required more states

was theorem 3 as it had more unification problems.

5 Conclusions

This joint collaboration is just starting. We have introduced a general rewriting

framework that uses TIL assertions and inference system for textual entailment of

sentences. We demonstrated by example that our framework can be implemented

in Maude and used it to prove in an automated fashion whether a sentence follows

from another.

There are many directions that we are considering pursuing with this work.

First there is the software engineering issue of using a big lexical database such as

WordNet as input for automated deductions. In our proof-of-concept framework we

just extracted a few nouns and verbs required for the examples we wished to prove.

The traditional wisdom is to use procedural attachments to extract from the big

11

database the required data for a given deduction. But it is reasonable to suppose

that with NLP’s recent success the automated reasoning community might consider

some version of ‘shallow theorem proving’, that is theorem proving for common

sense applications. We need to see if the automated theorem proving folks have

provided new ways of adding big databases to theorem provers or what they do

recommend.

Then there is the issue of the reasoning to produce representations, at the mo-

ment, performed by the NLP module and manually disambiguated. We would like

to be able to experiment with different NLP modules, especially open source ones.

The hope is that the representations we are using are vanilla enough to make adap-

tations not too costly. After all most of the industry uses WordNet, and common

grammatical features as basic vocabulary.

Thirdly there is the issue of sense disambiguation, which is a big problem in NLP,

with several systems proposed to solve it. For our proof-of-concept implementation

we could afford to do it manually, but for any reasonable use, we will need to decide

on a separate module for disambiguation.

From a more foundational point of view, we are also interested on the complexity

of the provability problem of TIL. We are also investigating what are the limitations

of the logic, i.e., which class of sentences can be proved by TIL inference. We expect

that such study will lead to sensible definitions for completeness of the logic.

Finally there is the issue that WordNet was not conceived as a semantic ontology,

let alone one geared for inferences. So much of the information we would like to get

from the lexicon is not there, yet. Together with Gerard de Melo, the second author

is working towards an Implicative Lexicon, ImpLex [9] to complement WordNet, but

this is only starting too.

References

[1] Maude homepage http://maude.cs.uiuc.edu. 2014.

[2] http://www.nigam.info/implementations/nlp.zip. 2014.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press, New York,

NY, USA, 2003.

[4] Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi, Lauri Karttunen, Tracy H.

King, Rowan Nairn, Valeria de Paiva, Charlotte Price, and Annie Zaenen.

PARC’s bridge and question answering system. In Proceedings of Grammar

Engineering Across Frameworks, pages 26–45, 2007.

[5] D.G. Bobrow, V. de Paiva, C. Condoravdi, R. Crouch, L. Karttunen, T.H.

King, R. Nairn, and A. Zaenen. A basic logic for textual inference. In Procs. of

the AAAI Workshop on Inference for Textual Question Answering, Pittsburgh

PA, page 27, 2005.

[6] D. Crouch J. Everett R. Stolle D. Bobrow de Paiva V. M. van den Berg Con-

12

http://maude.cs.uiuc.edu
http://www.nigam.info/implementations/nlp.zip

doravdi, C. Preventing existence. In Chris Welty and Barry Smith, editors,

Proceedings of the 2nd International Conference on Formal Ontology in Infor-

mation Systems (FOIS-2001), pages 17–19, Ogunquit, Maine, October 2001.

[7] R. Crouch and T. H. King. Semantics vis f-structure rewriting. In Proc. of the

LFG06 Conference, Universität Konstanz. Miriam Butt and Tracy Holloway

King (Editors), 2005.

[8] I. Dagan, D. Roth, M. Sammons, and F. Zanzotto. Recognizing Textual En-

tailment: Models and Applications. Morgan and Claypool, 7 2013.

[9] Gerard de Melo and Valeria de Paiva. Sense-specific implicative commitments.

In Proceedings of the 15th International Conference on Intelligent Text Process-

ing and Computational Linguistics (CICLing 2014), LNCS. Springer, 2014.

[10] V. De Paiva, DG Bobrow, C. Condoravdi, R. Crouch, L. Karttunen, TH King,

R. Nairn, and A. Zaenen. Textual inference logic: Take two. Proceedings of the

Workshop on Contexts and Ontologies, Representation and Reasoning, page 27,

2007.

[11] Valeria de Paiva. Bridges from language to logic: Concepts, contexts and on-

tologies. Electronic Notes in Theoretical Computer Science, 269(0):83 – 94,

2011. Proceedings of the Fifth Logical and Semantic Frameworks, with Appli-

cations Workshop (LSFA 2010).

[12] Valeria de Paiva. Contexts for quantification. In Proceedings of CommonSense

2013, Cyprus, 2013.

[13] Alex Djalali. Synthetic logic. Linguistic Issues in Language Technology, 9(2),

2013.

[14] C. Fellbaum. WordNet: An electronic lexical database. The MIT press, 1998.

[15] Peter N. Lasersohn. Event-based semantics. Encyclopedia of Language and

Linguistics, 2nd edition, ed. by K. Brown, 4(1):316–320, 2006.

[16] J. McCarthy. Notes on formalizing context. In Proc. of the 13th Joint Confer-

ence on Artificial Intelligence (IJCAI-93), pages 555–560, 1993.

[17] José Meseguer and Grigore Roşu. The rewriting logic semantics project. The-

oretical Computer Science, 373(3):213–237, 2007.

[18] Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. Computing relative

polarity for textual inference. Inference in Computational Semantics (ICoS-5),

pages 20–21, 2006.

13

	Introduction
	TIL Representations
	Textual Inference
	A Rewrite Framework for Textual Inference
	Using Maude
	Rewrite Framework
	Proposed ``theorems" and experimental results

	Conclusions

