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Abstract Recently Ferreira and Oliva introduced the Bounded Functional Interpre-
tation (BFI) [7] as a way of continuing Kohlenbach’s programme of shifting at-
tention from the obtaining of precise witnesses to the obtaining of bounds for these
witnesses, when proof mining. One of the main advantages of working with bounds,
as opposed to witnesses, is that the non-computable mathematical objects whose ex-
istence is claimed by various ineffective principles can sometimes be bounded by
computable ones. In this note we present first steps towards a categorical version of
BFI, along the lines of de Paiva’s version of Gödel’s Dialectica interpretation, the
Dialectica Categories, in [3]. The previous categorical constructions seem to extend
smoothly to the new ordered setting.

This paper is dedicated to Luiz Carlos Pereira on his birthday

1 Introduction

This preliminary note tries to make good in the promise I have made over the years
to Luiz Carlos Pereira to connect the categorical constructions in the Dialectica
Categories of my thesis [3] to the actual proof theory that inspired them, that is, to
the functional interpretations themselves, mostly Gödel’s Dialectica interpretation,
but also its Diller and Nahm variant.

This note is much indebted to the careful work done by Paulo Oliva and collab-
orators, especially Gilda Ferreira [8], as I hope it is abundantly clear from the note
itself. But, not surprisingly, I disagree with some of their conclusions, hence the
need to write this. Lastly, a word of caution: it is possible that all that I have to say
here is better said (and has been said) in the higher-order (in the sense of category
theory) language of [10] and [12]. But there is still a point in writing this, as the
“translation” from the fibrations and higher-order category theory language to the
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pedestrian category theory used here is non trivial and many will not be able to read
the very abstract formulation.

2 The Dialectica constructions

For my thesis I was originally trying to provide an internal categorical model of
Gödel’s Dialectica Interpretation, which I presumed would be a cartesian closed
category. But the categories I came up with proved also to be models of Linear
Logic. This was a surprise and somewhat of a boost for Linear Logic, which was
only beginning to appear then.

The traditional categorical modeling of intuitionistic logic goes as follows: a for-
mula A is mapped to an object A of an appropriate category, the conjunction A∧B
is mapped to the cartesian product A×B and the implication A→ B is mapped to
the space of functions BA (the set of functions from A to B). These are real carte-
sian products, so we have projections (A×B→ A and A×B→ B) and diagonals
(A→ A×A), which correspond to deletion and duplication of resources. This is not
a linear structure. To model a linear logical system faithfully we need to use ten-
sor products and internal homs in Category Theory. Luckily these structures were
considered by category theorists long before Linear Logic, so they were easy. What
was hard was to define the “make-everything-usual” operator, the modality !, which
applied to a linear proposition makes it an intuitionistic one.

Definition 1. The category Dial2(Sets) has as objects triples A = (U,X ,α), where
U,X are sets and α is an ordinary relation between U and X . (so either u and x are
α related, α(u,x) = 1 or not.)

A map from A = (U,X ,α) to B = (V,Y,β ) is a pair of functions ( f ,F), where
f :U →V and F :X → Y such that

U �
α

X

⇓ ∀u ∈U,∀y ∈ Y α(u,Fy) implies β ( f u,y)

V

f

?
� β

Y

6

F

or α(u,F(y))≤ β ( f (u),y)

An object A is not symmetric: think of (U,X ,α) as ∃u.∀x.α(u,x), a proposition
in the image of the Dialectica interpretation. But using this category and its linear,
multiplicative structure we can prove:

Theorem 1 (Model of CLL modality-free, 1988). The category Dial2(Sets) has
products, coproducts, tensor products, a par connective, units for the four monoidal
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structures and a linear function space, satisfying the appropriate categorical prop-
erties. The category Dia2(Sets) is symmetric monoidal closed with an involution
( )∗ that makes it a model of classical linear logic, without exponentials.

But how do we get modalities (or as Girard calls them, exponentials)? For this
specific categorical model, we need to define two special co-monads and do plenty
of work using distributive laws to prove the desired theorem. Recall that !A must
satisfy !A→!A⊗!A, !A⊗B→ I⊗B, !A→ A and !A→!!A, together with several
equations relating them. The difficulty is to define a comonad such that its coal-
gebras are commutative comonoids and such that the coalgebra and the comonoid
structure interact nicely.

Theorem 2 (Model of Classical Linear Logic with modalities, 1988). We can de-
fine comonads T and S on Dial2(Sets) such that the Kleisli category of their com-
posite ! = T ;S, Dial2(Sets)! is cartesian closed.

Define T by saying A = (U,X ,α) goes to (U,X∗,α∗) where X∗ is the free com-
mutative monoid on X and α∗ is the multiset version of α .

Define S by saying A = (U,X ,α) goes to (U,XU ,αU ) where XU is the set of
functions from U into X . Then compose T and S to get A = (U,X ,α) goes to
(U,(X∗)U ,α∗U ). This composite comonad does get us from the linear category to
the cartesian closed category corresponding to the Diller-Nahm interpretation. This
was the ultimate result desired in the thesis. But on the way to proving this we had
a second main definition

Definition 2. The category DDial2(Sets) has as objects triples A = (U,X ,α), where
U,X are sets and α is an ordinary relation between U and X .

A map from A = (U,X ,α) to B = (V,Y,β ) is a pair of functions ( f ,F), where
f :U →V and F :U×X → Y such that

U �
α

X

⇓ ∀u ∈U,∀y ∈ Y α(u,F(u,y)) implies β ( f u,y)

V

f

?
� β

Y

6

F

or α(u,F(u,y))≤ β ( f (u),y)

This category seems extremely similar to our first definition, in particular the
objects of the two categories are exactly the same. But morphisms are what make
a category and morphisms in the two cases are different enough, and induce very
different structures in the categories. In particular for this category we cannot define
a multiplicative disjunction, unlike the previous one, and the tensor product is much
simpler.

Theorem 3 (Model of ILL modality-free, 1987). The category DDial2(Sets) has
products, (weak)-coproducts, tensor products, units for the two monoidal structures
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and a linear function space, satisfying the appropriate categorical properties. The
category DDial2(Sets) is symmetric monoidal closed with products and weak co-
products that makes it a model of intuitionistic linear logic, without exponentials.

This model of restricted, intuitionisitic only linear logic has nonetheless a very
special property: it has co-free comonoids and hence it’s a rather special model of
linear logic, which accounts for the theorem below

Theorem 4 (Model of Intuitonistic Linear Logic with modalities, 1987). We can
define a co-free comonad !DN on DDial2(Sets) such that its co-Kleisli category
Dial2(Sets)! is cartesian closed.

Many calculations are needed to prove that the linear logic modality ! is well-
defined and to obtain a model of classical linear logic. But my previous work did
not emphasize this two-step process, as the goal was to obtain a cartesian closed
category, a model of intuitionistic linear logic. The two step process goes from Dial
to DDial to DNDial, the Diller-Nahm category, which is now Cartesian Closed.
Here we want to see this two-step process as a reflexion of what is happening in the
proof theory. The point being that going from the linear logic category Dial to the
intuitonistic linear logic category DDial, which has the same objects, but different
morphisms and hence different function spaces and different tensors can be seen as
the result of applying the modified realizability translation, in Oliva’s terms. These
we recap briefly below.

3 Unification of Proof Interpretations

In a recent preprint [17] Oliva provides a summary of his proposed syntactic uni-
fication of functional interpretations, a long standing research program that started
with the unification of Gödel’s Dialectica Interpretation and Kreisel’s Modified Re-
alizability in 2006 [15]. This unification is purely syntactic, so formulae of logical
systems are mapped to other logical systems, but proofs of propositions do not have
to be mapped, a priori.

In principle a semantic version of this unification already existed for the Dialec-
tica interpretation and its Diller-Nahm variant, as result of the work in [3]. The
basis of Oliva’s more comprehensive syntactic unification (which includes besides
Diller-Nahm and Dialectica, modified realizability and their “truth”-variants, five
functional interpretations so far) is the rephrasing of modified realizability in terms
of relational realizability which talks about a relation between potential witnesses
and challenges, in a way very similar to the way the dialectica interpretation is usu-
ally presented in terms of witnesses and counter-examples.

A second main idea of this unification is described in [16, 8] where it is pro-
posed that the main characteristics of the functional interpretations can be gotten
via interpretation of intuitionistic linear logic, complemented by several different
modalities, in particular modalities for Gödel’s dialectica, for the Diller-Nahm vari-
ant of dialectica and for modified realizability.
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While Oliva’s program acknowledges previous work of the present author [6,
2] as inspiration, the exact categorical relationships are not clearly spelled out. In
particular the categorical modelling of Kreisel’s modified realizability, in terms of
realizability toposes and the work developed in a series of papers by van Oosten,
Hyland and others is not, as yet, related to this unification. The goal of this note is
to see where are the problems in making this connection and whether we can see
a way of solving them. We start by reviewing the goals and motivations of both
realizability and functional interpretations.

3.1 Realizability

Kleene [13] recounts how his idea for a numerical realizability developed as he
wished to give some precise meaning to the intuition that there should be a connec-
tion between Intuitionism and the theory of recursive functions. Both theories stress
the importance of extracting information effectively. Kleene starts by conjecturing
a weak form of Church’s Rule: if a closed formula of the form ∃x∀yφ(x,y) is prov-
able in intuitionistic number theory, then there must be a general recursive function
F such that for all n, the formula φ(n,F(n)) is true.

The main motivation for Kleene for inventing realizability in the forties seems
to be the work of Hilbert and Bernays, in their Grundlagen der Mathematik. They
explained the finitist position in Mathematics, as follows (translation by Jaap van
Oosten in [19])

An existential statement about numbers, i.e. a statement of the form ‘there exists a number
n with property A(n)’ is finitistically taken as a ‘partial judgement’ that is, as an incom-
plete rendering of a more precisely determined proposition which consists in either giving
directly a number n with the property A(n) or a procedure by which such a number can be
found...

Kleene wondered whether a completion procedure might be provided that com-
pleted the description for all logical connectives, but suggested that his was, in any
case, a “partial analysis of the intuitionistic meaning of the statements”.

Realizability is famously understood in categorical terms using Hyland’s “Ef-
fective topos” [11]. Modified realizability, as originally defined by Kreisel, has also
given rise to a categorical formulation in terms of toposes, so one would expect con-
nections between these toposes and the Oliva’s program of functional interpretations
unification, at the semantic level.

3.2 Proof Mining and Functional Interpretations

Proof mining is the process of logically analyzing proofs in mathematics with the
aim of obtaining new information. How do we do proof mining and what do we get?
A proof of a theorem like “x as an element of a space X is a root of a function f :X→
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R” is a complete theorem, i.e. it gives us an equation f (x) = 0 and we don’t need
any other information. But a theorem stating that “ f is (strictly) positive at a point
x ∈ X” is incomplete, for it leaves open how far from zero the value f (x) actually
is. It turns out that in many cases the information missing in an incomplete theorem
can be extracted by purely logical analysis out of prima-facie ineffective proofs of
the theorem. The Dialectica interpretation together with other proof interpretations
is a major tool for proof mining. But what are proof interpretations or functional
interpretations? They are proof transformations that can be used to extract extra
information from proofs. Ulrich Kohlenbach has made extensive use of these and
explains a full range of proof interpretations and their applications in [14].

4 Semantic Unification of Proof Interpretations?

Most of the recent work on semantic proof interpretations has been using fibrations,
e.g. Hyland [12], Biering [1], Hofstra [10] and Hedges [9]. While the more ex-
pressive framework might be necessary, the syntactic unification described by Oliva
and collaborators gives hope that another, more pedestrian route might be available.
And if the pedestrian route isn’t available it will be enlightening to see where it fails
vis-à-vis the syntactic work.

Taking a leaf from Shirahata [18] and Oliva and Ferreira’s work we should dis-
cuss the proof interpretation of a weaker system first. While my original work was
mostly concerned with intuitionistic logic, and considered Linear Logic as a step
stone to get to “traditional” logic, some of the work, starting with Shirahata is about
interpretations of linear logical systems. Some are about classical linear logic, some
about intuitionistic linear or affine logic.

4.1 Intuitionistic Linear Logic

We revisit Ferreira and Oliva’s “Functional Interpretation of Intuitionistic Linear
Logic” [8], where we disagree, somewhat, with their interpretation of the connection
between our works. They say and we agree that

In this section we try to explain and make more explicit the link between our framework
for unifying interpretations of IL via interpretations of ILL and the categorical approach on
[3, 2, 6] for modelling ILL.

But while it is true that “in [2] one finds a categorical version of the Dialectica in-
terpretation and an endofunctor interpretation for the modality !A that corresponds
to the Diller-Nahm interpretation” the table setting up the correspondence in their
paper is not as precise as it needs to be. In particular, what is missing from the ex-
planation in section 5 of [8] is the two-step process that takes us from modality-free
Linear Logic to Intuitionistic Logic. The first of these steps sends us from a pure (no
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modalities) linear category to one that might correspond to Modified Realizability
in their terms, while the second step takes us from modified realizability objects to
Diller-Nahm sets of witnesses/challenges.

Table 1 Comparison

Fer-Oliva DDial Dial
realizers finite types ccc C ccc C
formulas |A| ⊆U×X α ⊆U×X α ⊆U×X
sequents A ` B ( f : U →V,F : U×Y → X) ( f : U →V,F : Y → X)
linear impl A−◦B (VU ×XU×Y ,U×Y,α−◦β ) (VU ×XY ,U×Y,α−◦β )
tensor ⊗ (U×V,X×Y ) (U×V,XV ×YU )
modality !R !∀x|A|ux (U,XU ,αU )
modality !DN !∀x ∈ a|A|ux (U,X∗,α∗)
modality !R;DN !|A|ax (U,(XU )

∗
,(αU )∗)

Note that the realisers of the functional interpretation are taken from a given
(fixed) cartesian closed category C in [3], while Ferreira and Oliva work with the
particular cartesian closed category of the functionals of finite type. Apart from the
relation α⊕β , the interpretation of the linear logic connectives in DDial coincides
precisely with the definitions in [8].

Note that [8] assumes that each finite type is inhabited by at least one element,
while [3] imposes no similar restriction. (this means that Ferreira and Oliva are
dealing with affine logic, instead of linear logic, as the tensor operator can now have
projections given by the inhabitants of the sets.) In the category DDial we have no
way of producing projection functions π1,2:A× B→ A,B, so we’re dealing with
linear logic, not affine logic.

While we do explain how one could, in principle ‘cheat’ and provide an inter-
pretation for the contraction axiom A−◦ A⊗ A by using a trick to map into one
counterexample, when we have a choice of two such, this is not a uniform oper-
ation, hence it does not produce a functor, is poor category theory and we do not
pursue it in our work.

Another difference is the weak coproduct of [3], which can be made much sim-
pler in Ferreira and Oliva’s setting using inhabitedness of witnesses and counter-
examples. In the categorical approach we do not assume inhabitedness, but can still
obtain the weak coproduct.

4.2 Modified Realizability Modality

If one thinks of modified realizability witnesses as actual and potential witnesses, as
in Oliva’s reformulation, where actual witnesses are a subset of the potential ones,
then objects of the form (U,XU ,αU ) make sense, as we can think of U as being
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naturally embedded into XU via the “constant” map X → XU . Then we might end
up with a construction as follows:

Definition 3. Objects of the category MR (for modified realizability) are triples A =
(U,XU ,αU ), B= (V,YV ,βV ) where the relation αU :U×XU → 2 is the composition
of U ×XU → U ×X →α 2. Morphisms need to be considered in the category of
coalgebras of the comonad R that sends an object A to RA = (U,XU ,αU )

Ferreira and Oliva state, when discussing the bang interpretation that “Our con-
ditions are more general, and include as particular case the instance where ”!” is a
comonad with comonoid objects.” It is true that their conditions are more general,
but they are simply of the form “this needs to happen”, while the categorical model
exhibits a mathematical structure that indeed satisfies the requirements of the model.

4.3 Diller-Nahm Modality

If we start from the category Dial we can simply apply the Diller-Nahm modality
taking (U,X ,α) to (U,X∗,α∗) where we are considering not simply the free monoid
in X , but actually the free commutative monoid on X . This corresponds precisely to
the idea that for the Diller-Nahm interpretation we collect the witnesses into a finite,
but unlimited set.

4.4 The composite !R,DN Modality

Only when we compose the two comonads we can get that objects of the form !A
satisfy all the conditions for modelling propositions of intuitionistic logic.

5 Dialectica Spaces over Partial Orders

Let us consider the category Poset of partially ordered sets and monotone functions.
Monotone functions compose to give monotone functions and the identity function
on a poset (X ,≤) is monotonic. The category Poset has products. Given (X ,≤X ) and
(Y,≤Y ) their product is (X ×Y,≤X×Y ), where the order on the product is pointwise
order (x,y)≤X×Y (x′,y′) iff x≤X x′ and y≤Y y′.

The category Poset is cartesian closed, the function space of Poset is given by
monotone maps ordered pointwise f ≤ g : U → V iff f (u) ≤V g(u) for all u in U .
The category Poset also has coproducts, given by the disjoint sum.

What can we say about the dialectica constructions over the category Poset? In
previous work we described two Dialectica-constructions: they share the objects, but
morphisms in DDial are more complicated than the ones in Dial. The category Dial
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was originally called GC as a thank-you note to Girard, who originally suggested it
as a simplification of the dialectica DDial construction.

First we can define Dial2Posets.

Definition 4. Objects of Dial2Posets are triples A = (U,X ,α) where (U,≤U ) and
(X ,≤X ) are posets and α:U × X → 2 is a generalized relation into 2. Maps are
monotone maps f :U → V and F :Y → X such that α(u,F(y)) ≤ β ( f (u),y). This
means that in the following commuting diagram we have a 2-cell:

U×Y
U×F- U×X

V ×Y

f ×Y

?

β

- 2
?

α

The identity map on an object A = (U,X ,α) consists of the identity on U and the
identity in X , (idU , idX ) which clearly satisfies the implication condition.

Composition of morphisms is straightforward. Given morphisms ( f ,F):A→ B,
where B is (V,Y,β ) and (g,G):B→ C, where C is (W,Z,γ), the composition in
the first coordinate is simply f ;g:U →W and in the second coordinate we have

Z
G- V

F- X . We are always composing monotone maps, which gives us

monotone maps and we need to check that α(u,F(G(z))) ≤ γ(g( f (u)),z). But be-
cause ( f ,F) is a morphism we know α(u,F(G(z))) ≤ β ( f (u),G(z)) and because
(g,G) is a morphism we know β ( f (u),G(z))≤ γ(g( f (u),z), so putting the inequal-
ities together we have the desired one.

As discussed in [4] we need proper products and function spaces in Posets to
define tensor products and function spaces in Dial2Posets. Since the category Posets
does have products and function spaces we can define

Definition 5. Given objects A and B, say (U,X ,α) and (V,Y,β ), of Dial2Posets
their function space A−◦B is the object (VU ×XY ,U ×Y,α −◦β ) where the rela-
tion α −◦β is defined by α −◦β ([h,H], [u,y]) iff whenever α(u,H(y)) holds then
β (h(u),y) holds.

This is a direct internalization of the notion of dialectic morphism above and
reverse engineering from this notion of morphism (to produce a monoidal closed
category) gives us the following notion of tensor product.

Definition 6. Given objects A and B of Dial2Posets ((U,X ,α) and (V,Y,β ) respec-
tively), their tensor product A⊗ B is the object (U ×V,XV ×YU ,α ⊗ β ) where
the relation α ⊗β is defined by α ⊗β ([u,v], [h1,h2]) iff whenever α(u,h1(v)) and
β (h(v,h2(v)) hold.

Then, all going according to plan, we end up with a theorem that says:
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Theorem 5. The category Dial2Posets is a symmetric monoidal closed category,
with products and coproducts.

Products are given by products in the first coordinate and coproducts in the sec-
ond, so if A = (U,X ,α) and B = (V,Y,β ) then the product A×B = (U×V,X +Y, p)
where p:U ×V × (X +Y )→ 2 chooses either α or β depending on the element of
X +Y picked. A terminal object will be 1 = (1,0, ι) where ι is the empty relation
on 1×0.

Natural Numbers Objects

The category of sets has the original natural numbers object N, with zero and suc-
cessor zero,suc functions. One might wonder about a natural numbers object in
Dial2Sets. By analogy one would expect it to be something like (N,X ,α), where N
is the natural numbers in sets and X would be some kind of dual of natural numbers.
While a dual of the natural numbers is hard to conceive in sets, it would make sense
to simply invert the order, if considering the concept in Poset.

Say we had such a natural numbers object N = (N,N,α) in D2Posets, where
α:N ×N → 2 is the diagonal. As discussed in [5], were we to consider a NNO
structure with respect to the categorical product in Dial2Sets, we would need a map
zero z:1→ N. Since the terminal object in Dial2Sets is (1,0,ch), the empty relation
in the empty set, this would be (z : 1→ N,z : N→ 0) and there is no map z : N→ 0.
But degenerate linear NNO’s, using the monoidal structure of the tensor product in
Dial2Sets can be obtained as suggested in the note above.

6 Conclusions

We have re-appraised the work on Dialectica constructions under the light of the uni-
fication of functional interpretations carried out by Gilda Ferreira and Paulo Oliva
[8]. The main result is our improved table of comparisons between our works.

Further we described an easy extension of the formalism of Dialectica construc-
tions to ordered categories, which we claim should model the bounds on witnesses
and counter-examples as described in the Bounded Functional Interpretation of Fer-
nando Ferreira and Paulo Oliva [7]. We have not solved the main problem we wished
to investigate, that is the connection between the Effective Topos (and the Modified
Realizability topos) and the categorical working arising from Dialectica and its con-
nection to Linear Logic. But we have already ‘borrowed’ more time than we can
afford, to finish this note. It is a small souvenir (uma lembrancinha) for Luiz Carlos
and it will have to do.
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