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Abstract

Andreas Blass has frequently pointed out that inequalities between cardinal invariants of the con-
tinuum are usually proved via morphisms of some versions of (dual) Dialectica Categories – which

are certain categories introduced by the second author as categorical models of linear logic. In this

paper, we discuss the reasons why Dialectica Categories can be successfully applied to prove such
inequalities. The main goal of this ongoing research is to circumscribe the effectivity of the described

method and to discover why it works as well as it does. Combinatorics of ideals and the notions of

unboundedness and domination in pre-orders are presented as study cases which serve as evidence
in favour of some conjectural principles. To finish, a number of questions and problems are posed.
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1 Introduction

Set Theory and Category Theory will be certainly present in any list of natural
candidates to provide foundations for all Mathematics. However, as opposite players
in a never ending game, researchers from both areas often decide not to consider
arguments, reasoning and techniques from the “other side” in their own work. In this
paper, the authors (one of them a set-theorist, the other a category theorist) reject
such way of doing Mathematics. Indeed, this work investigates a certain context
where both Category Theory and Set Theory interact – in a splendid way –, and, in
this particular context, we want to explain certain general phenomena.

. . . It often happens that there are similarities between the solutions to problems, or between

the structures that are thrown up as part of the solutions. Sometimes, these similarities

point to more general phenomena that simultaneously explain several different pieces of

mathematics. These more general phenomena can be very difficult to discover, but when

they are discovered, they have a very important simplifying and organizing role, and can

lead to the solutions of further problems, or raise new and fascinating questions.

(T. Gowers, The Importance of Mathematics, 2000 [14])
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Given the expected audience for this work – logicians with background, experience
and/or interests in Category Theory –, we assume the reader is familiar with the
usual language of categories; in any case, we refer to [18] or [1] for more details on
that. Certain technicalities of Set Theory are needed in this paper (probably with
some level of specificity which is higher than the expected for researchers who do not
work with such notions in a daily basis), so let us talk a little bit about sets.

If x and y are sets, then x × y, xy and P(x) denote, respectively, the Cartesian
product of x and y, the set of functions from x into y and the powerset – i.e., the set
of all subsets – of x. Two sets x, y are said to be equipotent (and we write x ≈ y) if
there is a bijection between them – and, intuitively, they have the same size.

The set theoretical framework of this paper is the usual ZFC (Zermelo-Fraenkel
– ZF, with Choice) Set Theory – with first order, finitary subjacent logic –, which
will be freely used; our terminology and notations are standard, see for instance [17].
In particular, α, β, γ, δ denote ordinals and κ, λ, θ denote cardinals. Recall that (i)
ordinals are transitive sets which are well-ordered by ∈; (ii) the family of all ordinals,
On, is not a set – it is a proper class; and (iii) for every α one has α = {β : β < α}
– i.e., an ordinal is precisely the set of all ordinals which ∈-precede it.

We are assuming that the Axiom of Choice holds, so it follows that every set can
be well-ordered – and thus we can define the cardinality of any set x (denoted by |x|)
as the minimal α such that α ≈ x. An ordinal κ is said to be cardinal if |κ| = κ. In
this sense, cardinals are initial ordinals. Clearly, x ≈ y if, and only if, |x| = |y|.

The successor of a cardinal κ – which is the smallest cardinal greater than κ – is
denoted κ+ and one can easily check (using Replacement) that κ+ = {α : α 4 κ} –
where 4 is the usual domination relation, meaning that x 4 y indicates that there
is a (nameless) injective function from x into y. In particular, the first uncountable
ordinal, ω1, is precisely the set of all countable ordinals.

Even without the Axiom of Choice one can prove that if x and y are sets such that
x 4 y and y 4 x then x ≈ y – indeed, this is the famous Schröder-Bernstein-Cantor
Theorem, which holds in ZF.

In a Set Theory setting as the one described above (where choice is fully embraced),
all cardinals of infinite sets are alephs – meaning that, considering the sequence (in-
dexed by all ordinals and defined by transfinite recursion) given by

ℵ0 = ω = {n : n is a natural number},

ℵα+1 = ωα+1 = (ℵα)+

and, if γ is a limit ordinal,

ℵγ = ωγ = sup{ℵα : α < γ},

then the class of all infinite cardinalities Card is given by Card = {ℵα : α ∈ On}.
The Continuum Hypothesis (denoted by CH) is the statement “ℵ1 = c” , where c

denotes the cardinality of the continuum, that is, c = 2ℵ0 = |R| = |ω2| = |ωω|. The
Continuum Hypothesis is equivalent (in ZFC) to the following statement: “If X is an
infinite subset of R, then either X is countable (i.e., X ≈ ω) or X ≈ R ” – indeed, this
is the original statement of CH, due to Cantor (1879). Recall that Cantor also proved
(using the diagonal argument) that κ+ 6 2κ for every κ; the Generalized Continuum
Hypothesis (GCH) asserts equality everywhere, that is, “2ℵα = ℵα+1 for every α”.
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After this quick recap, let us describe the organization of this paper. In Section
2 we recall some facts on Dialectica Categories, which were introduced by the sec-
ond author in [23]. We also present a version of (the dual) of this category, which
was, independently, introduced by Vojtáš ([30]). Applications in Set Theory and
Analysis of Vojtáš’ category are discussed. In Section 3 we investigate the so-called
cardinal invariants of the continuum, and we show that several of these cardinals
may be associated to objects of the categories considered. In Section 4 we discuss
a certain empirical fact, which was first pointed out by Blass, and we present some
conjectural principles, which we see as steps towards an explanation of this empirical
fact; combinatorics of ideals shows up as a crucial study case – as do the notions of
unboundedness and domination in pre-orders (i.e., reflexive transitive relations). We
conclude by posing some questions and presenting some directions for the upcoming
research.

Before getting into the paper itself, the authors would like to present a disclaimer:
this work is a report of ongoing research. There are few new results in this paper
(only the Theorems 4.7 and 4.13 appear here for the first time). The authors believe
this paper is worth sharing because of the novelty of its study cases, conjectures and
problems; this is a new perspective on some traditional material. The paper, which
summarizes and surveys a number of known results in order to give context to its
conjectures and problems, is not supposed to be our final word on this subject; we
do not have yet, for instance, the answer to our Main Question (concerning “Blass’
empirical fact” , see Section 4). This is a first step on a path that was never taken
before (which is to explain why a certain method works as well as it does); but any
path needs a first step, and this is it.

2 Dialectica Categories

2.1 Some history

Dialectica categories are one of the outcomes of a long line of research in Categorical
Logic, and their history can be traced back to Gödel. Gödel developed a functional
interpretation of intuitionistic logic via computable (or primitive recursive) functionals
of finite type, using the so-called Dialectica Interpretation – named after the Swiss
journal Dialectica, special volume dedicated to Paul Bernays 70th birthday in 1958,
see [13] –, in order to provide a proof of the consistency of arithmetic.

Almost three decades after that, Hyland (second author’s PhD advisor) suggested
that to provide a categorical model of the Dialectica Interpretation, one should look
at the functionals corresponding to the interpretation of logical implication. The
categories de Paiva came up with in her thesis (see [23] and [24]) proved to be a model
of Linear Logic. Linear Logic had then just been introduced by Girard (see [12]) as
a proof-theoretic tool, combining the dualities of classical logic and the constructive
content of proofs of intuitionistic logic. Since then, Linear Logic has been recognized
as an important tool for the semantics of Computing.

It is interesting to notice that the motivations for considering the Dialectica inter-
pretation were quite varied as time went by. For Gödel (in 1958), the interpretation
was a way of proving consistency of arithmetic. For de Paiva (in 1988), it was an
internal way of modelling the Dialectica interpretation that turned out to produce
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models of Linear Logic instead of models of Intuitionistic Logic, the expected ones.
For Blass (in 1995) [3] Dialectica Categories were used as a way of connecting the
work of Vojtáš’ on Set Theory to de Paiva’s and also to his own work on Linear
Logic and to cardinal invariants of the continuum (which are the “cardinalities of the
continuum” we refer to in the title of this paper).

The second author of this paper did not foresee that applications of Dialectica
categories would arise in Set Theory at all. In fact, the present work emerged from
the desire to provide an explanation of why such applications exist and why they work
as well as they do.

2.2 Dialectica Categories: Basic Definitions

Objects of the Dialectica category Dial2(Sets) are triples, a generic object is A =
(U,X,R), where U and X are sets and R ⊆ U ×X is an usual set-theoretic relation.
A morphism from A to B = (V, Y, S) is a pair of functions f : U → V and F : Y → X
such that uRF (y) implies f(u)Sy. This category has products and coproducts, initial
and terminal objects; the reader may find the details in [24].

The category Dial2(Sets) has, also, a symmetric monoidal closed structure, which
makes it a model of (exponential-free) intuitionistic multiplicative linear logic. Expo-
nentials or modalities can also be modelled, as explained in the references, but they
will not play a major role in what follows.

2.3 The category PV
Vojtáš ([30]), in order to investigate certain relations between explicit objects of Anal-
ysis, introduced a category that he called GT (for Galois–Tukey connections). This
category is a variant of the Dialectica category Dial2(Sets) (in fact, it is a variant of
the opposite (dual) category Dial2(Sets)op), this was the insight of Blass in [3], and
we call this category PV as does Blass (P after de Paiva, V after Vojtáš).

Definition 2.1
The category PV has, as objects, objects of Dial2(Sets) – except that

1. All the sets U,X considered have cardinality at most the cardinality of the real
numbers R.

2. The MHD (for Moore, Hrušák and Džamonja, [19]) conditions hold: for all u in
U there is an x in X such that uRx and for all x in X there is u in U such that
¬uRx.

The category PV has as morphisms certain pairs of functions, in opposite directions,
as described below.

If, as Blass [3], one interprets the elements of U as “questions”, the elements of
X as “answers” and uRx as the assertion “x answers question u”, then the MHD
conditions (which are kind of non-triviality conditions) say that “every question has
an answer – but there is no particular answer that responds simultaneously all the
questions”.
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As every intuitive interpretation of a formal definition, the preceding “translation”
of the MHD conditions to a sentence on questions and answers should be taken with
a pinch of salt. It is clear that the first MHD condition, which is

(∀u ∈ U)(∃x ∈ X)[uRx]

indeed asserts, in the expected interpretation, that “every question has an answer”.
But consider the second MHD condition, which is:

(∀x ∈ X)(∃u ∈ U)[¬uRx]

To say that the preceding formula asserts that “there is not a particular answer that
responds simultaneously to all the questions” , one should assume that such formula
is equivalent to

¬(∃x ∈ X)(∀u ∈ U)[uRx]

and, even considering that this is clearly true within Classical Logic, such assumption
could bring some problems if we are interested in working in some more constructive
environment (such as Intuitionistic Logic for example) – where the equivalence we
have just referred to is no longer valid.

Even the formula (∀x ∈ X)(∃u ∈ U)[¬uRx] (i.e., the second MHD condition) is
somehow problematic if we look at it with the eyes of a computer scientist. It asserts
that, given a particular “answer” x, then there is a question which is not responded
by x – however, in principle there are no canonical choices or constructive algorithms
here which produce such “question” u which is not answered by x. The authors
believe that the issue of the non-constructivity of the MHD conditions deserves further
investigation. Despite their non-constructive aspects, one should notice that these so-
called “non-triviality MHD conditions” are in the one hand perfectly sensible for the
application that we consider (investigating cardinal invariants), but on the other hand
they are not very categorical in nature – and this deserves some further investigation.

Recall that PV is a version of the opposite of Dial2(Sets), and therefore morphisms
in PV satisfy the dual condition – that is, a pair of functions (f, F ) is a morphism
from (V, Y, S) to (U,X,R) if f : U → V , F : Y → X and f(u)Sy implies uRF (y).
The set-theoretical applications of PV are mostly based on the Galois-Tukey pre-order
induced by the morphisms. It is somewhat perverse that here, in contrast to usual
categorical logic, if o1 and o2 are objects of PV then

o1 6GT o2 ⇐⇒ There is a morphism from o2 to o1.

If we interpret, given an object (U,X,R) of PV, elements of U and X as, respec-
tively, “problems” and “solutions” (instead of “questions” and “answers” , as done
previously) and if, accordingly, we interpret uRx as the assertion “x solves u” , then
the described pre-order (that is, the existence of a morphism) captures the idea of
reduction of problems ([6]): if o1 6GT o2, then problems in o1 can be reduced to prob-
lems in o2 – and in this sense the complexity of the problems in o1 is smaller than
or equal to the complexity of the problems in o2, or, in other words, o1 is “simpler
than” o2 ([30]). Indeed: consider o1 = (U1, X1, R1) and o2 = (U2, X2, R2) satisfying
o1 6GT o2, and let (f, F ) be a morphism from o2 to o1. Let u1 ∈ U1 be an instance of
a problem in U1. We can reduce the solution of the problem u1 in U1 to the solution
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of the problem f(u1) in U2, since, if x2 ∈ X2 solves f(u1) ∈ U2 then F (x2) ∈ X1

solves u1 ∈ U1 – since f(u1)R2x2 =⇒ u1R1F (x2), by the definition of the morphisms.
In the next subsection, we present an application of the category PV in Set Theory

which clearly illustrates this idea of reduction between objects.

2.4 An Application in Set Theory: Parametrized Diamond Principles

Here we will briefly describe the first application of objects and morphisms of PV
in Set Theory that we are aware of, as reported in [20]. Such application is in the
context of combinatorial principles which are understood as weak versions of Jensen’s
Diamond – a very sophisticated consistent combinatorial principle, usually denoted
by ♦. For the sake of completeness, we give some information on the ♦ principle
(but none of this is essential for understanding what comes next). This combinatorial
principle is a “guessing principle” which is stronger than CH, holds under the Axiom
of Constructibility and it is often viewed as the crystallization of Jensen’s combina-
torial argument used (in the early 70’s) in his celebrated proof that there is a Souslin
tree in the constructible universe (see [16]).

For every object o = (U,X,R) in PV, Moore, Hrušák and Džamonja have intro-
duced, more recently ([19]), the weak parametrized diamond principle Φ(o), which
corresponds to the following statement:

Definition 2.2 (The weak parametrized diamond principle Φ(o))
For every function F with values in U , defined in the binary tree of height ω1, there
is a function g which is an “oracle” , that is, there is a function g : ω1 → X such that
g “guesses” every branch of the tree, meaning that for all f ∈ ω12 the set given by
{α < ω1 : F (f � α)Rg(α)} is stationary.

In the preceding definition, the notion of stationary set refers to a subset of ω1 that
intersects all closed, unbounded subsets of ω1 – these sets carry analogous properties
to sets of positive measure, since it is a well-known fact among set theorists (see, e.g.,
[17], Chapter II) that the countable union of non-stationary sets is non-stationary. In
general, guessing principles assert the existence of a certain “oracle” over ordinals in
ω1, which will always guess correctly at least stationarily many times – meaning that
the set of ordinals on which the “oracle” intersects some set of “desired ocurrences”
turns out to be stationary.

If o = (U,U,R), then Φ(U,U,R) is usually written as Φ(U,R).It is worth remarking
that, even before the introduction of the preceding definitions and notations, Devlin
and Shelah had already shown in the late 70’s ([8]) that Φ(2,=) is equivalent to the
inequality “2ℵ0 < 2ℵ1”.

As can be easily verified (cf. [27]),

If o1 6GT o2, then Φ(o2)⇒ Φ(o1).

The preceding fact is an example of what we have called reduction in this context:
the existence of a morphism from o2 to o1 implies that problems concerning o1 (in this
case, the existence of an “oracle” function g as above) could be reduced to problems
concerning o2, and under this point of view the preceding implication is quite natural.
We invite the readers to just apply the definitions in the most natural way and check
the preceding fact.
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It follows that morphisms between objects can be used to prove implications be-
tween weak diamonds. In fact, almost all of the following implications (which hold
for every object o) are verified via morphisms:

♦ ⇔ Φ(R,=)⇒ Φ(o)⇒ Φ(R, 6=)

⇔ Φ(2, 6=)⇔ Φ(2,=)⇔ 2ℵ0 < 2ℵ1 .

The implications “Φ(R,=)⇒ Φ(o)⇒ Φ(R, 6=) for every o” are consequences of the
minimality of (R,R, 6=) and of the maximality of (R,R,=) in the order 6GT over the
objects of PV; indeed, it is easy to argue that instances of problems from (R,R, 6=)
are the less complicated ones to solve (with plenty of solutions) and that instances
of problems from (R,R,=) are the more complicated ones to solve (with only one
solution).

Proofs, details and/or references for all preceding implications may be found in
either [19] or [27]. Notice that this sequence of implications and equivalences justify
why these combinatorial principles are known as weak diamonds – being the inequality
2ℵ0 < 2ℵ1 the weakest diamond of all.

In a number of papers, the first author (either alone or in collaboration with Charles
Morgan) has applied successfully the theory of parametrized diamond principles in
order to obtain consistency and independence results (relatively to ZFC) in Set The-
oretical Topology (see [20], [21], [28] and [22]).

3 Cardinal invariants of the continuum

3.1 Between ℵ0 and c

One of the most investigated topics nowadays in Set Theory is the study of cardinal
invariants of the continuum, also called cardinal characteristics of the continuum – or
even small cardinals. Vaughan defined small cardinals in the following schematic way:
“A small cardinal is a cardinal number that is defined as the cardinality of a set that
is associated in some way with the set of natural numbers” ([29]). Indeed, the most
common way to define one of such cardinals is considering the minimal cardinality of
a subfamily of either P(ω) or ωω which does not satisfy some property which can only
fail for uncountable subfamilies. Recall that, for a set theorist, P(ω), ωω and R are
pretty much the same object, and, for a topologist, ωω (endowed with the Tychonoff
topology) is the Baire Space – a topological space which is homeomorphic to the set
of irrational numbers, as a subspace of R, and also a standard example of a Polish
space (i.e., a separable and completely metrizable topological space). So, even being
defined combinatorially – which facilitates the task of establishing consistency results
about them –, it should not be surprising at all (but, nevertheless, it still is!) that
such cardinals have a considerable influence on a number of issues from Topology and
Analysis.

Blass has used the terminology nearly countable cardinals ([4]) to name these car-
dinals. Such cardinals are amazing tools when it comes to determining exactly when
cardinals between ℵ0 and c change their behaviour.

. . . One of set theory’s first contributions to the rest of mathematics, and still one of the
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most important, is the distinction between different infinite cardinalities, especially between

countable infinity and the cardinality c = 2ℵ0 of the continuum. This distinction made
possible the theory of Lebesgue measure (where countable additivity is an essential ingre-

dient but continuum additivity is impossible) and the Baire category theorem (where again

“countable” clearly cannot be replaced with c) . . .

. . . In these and similar situations, it is reasonable to ask where the transition from countable-

like to continuum-like behaviour occurs. Of course, if one believes the continuum hypothesis,

under which countable infinity ℵ0 and the continuum c are consecutive cardinals, then there

is nothing more to be said. But if, as is known to be consistent with the usual axioms

of set theory (ZFC), there are cardinals strictly between ℵ0 and c, then it makes sense to

ask whether these cardinals behave like ℵ0 or like c with respect to additivity of Lebesgue

measure, the Baire category theorem, . . . , etc. Questions of this sort are studied in the

theory of cardinal characteristics of the continuum.

(A. Blass, 1996 [4])

The standard references for cardinal invariants of the continuum are [7] (for a more
general point of view, which includes Analysis) and [9] (for applications in General
Topology).

These cardinals are usually defined in terms of the combinatorial structure of func-
tions from ω to ω, or that of infinite subsets of ω. Let us present two examples of
small cardinals; the reader will realize, before the end of the paper, that our choice
of examples was not a random one.

Definition 3.1 (Combinatorics of functions)
1. If f, g ∈ ωω, we say that g eventually dominates f (and we write f 6∗ g) if
{n < ω : g(n) < f(n)} is a finite set.

2. d is the minimum number of functions ω → ω needed to eventually dominate every
such function;

3. b is the minimum number of functions ω → ω such that no single function even-
tually dominates them all.

It is easy to check that 6∗ is a pre-order.
A family D of functions as in 2 (that is, a family D ⊆ ωω such that for every

f : ω → ω there is g ∈ D such that f 6∗ g) is said to be a dominating family, and a
family B of functions as in 3 (that is, a family B ⊆ ωω such that for every f : ω → ω
there is g ∈ B such that g 66∗ f) is said to be an unbounded family. So, b is the
smallest possible size of an unbounded family and d is the smallest possible size of a
dominating family.

A standard diagonal argument shows that b is uncountable, and obviously one has
b 6 d (since a dominating family is clearly unbounded).

Summing up, we have the following provable sequence of inequalities involving the
small cardinals b and d:

|ω| = ℵ0 < ℵ1 6 b 6 d 6 2|ω| = 2ℵ0 = c

Such cardinals are indeed ubiquitous in Topology and Analysis. For instance, d
is the smallest number of compact subsets of the irrationals needed to cover the
irrationals, identified with the Baire space ([9]). Also, if b = ℵ1 then there is a
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Lindelöf space X such that the product X × ωω is not normal (this result is due to
E. Michael; see details and references in [29] or [9]).

In the next subsection, we will see that a number of cardinal invariants of the
continuum may be associated to objects in PV – and, moreover, that one can use
morphisms of PV to prove inequalities between such cardinal invariants; this consti-
tutes the application of PV to Set Theory we investigate in this paper.

3.2 Cardinal invariants and the norm of objects in PV
From this point on, we move definitely to the cardinals, and we unify the discussion
on cardinal invariants and on objects and morphisms of the category PV. Indeed, to
every object in PV one can assign a certain cardinal invariant.

Definition 3.2 (The norm of an object of PV)
Given an object o = (U,X,R) in PV, its norm (or evaluation) is a cardinal number,
denoted ||(U,X,R)||, defined as follows:

||(U,X,R)|| is the minimum cardinality of a subset Y ⊆ X such that
for every u ∈ U there is y ∈ Y such that uRy.

Informally, we will refer to such cardinals as “Abelard and Eloise cardinals” – given
the remarkable presence of the quantifiers ∀∃ in their definitions.

Notice that the first MHD condition ensures that X itself satisfies the requirement
for the above Y , so such cardinal is well-defined; and the second MHD condition
ensures that the norm is not 1 – it should be clear that, within Set Theory, there is
no interest in the cases where the norm is a finite cardinal, that is, a natural number.
We will presently interpret the second MHD condition in a restricted case on which
its role will be more intuitive.

Of course, whenever they are well-defined, we could consider norms of objects in
Dial2(Sets)op as well, not only in PV.

Inequalities between cardinals like these may be proved just by exhibiting mor-
phisms - in an elegant and mnemonic way.

Theorem 3.3 (“Folklore” ; cited in [5])
If o1 6GT o2 then ||o1|| 6 ||o2||.

Proof. Let (ϕ,ψ) be a morphism from the object o2 = (A2, B2, E2) to the object
o1 = (A1, B1, E1), and let Y2 ⊆ B2 be a minimal witness, i.e., ||o2|| = |Y2| and Y2 is
as expected.

Then, you just have to pick Y1 = ψ[Y2] ⊆ B1 and you will have

(∀x ∈ A1)(∃y ∈ Y1)[xE1y]

(Let y = ψ(b) for some b ∈ Y2 such that ϕ(x)E2b; recall that Y2 is as expected.)
So, Y1 is a witness, and therefore ||o1|| 6 |Y1| 6 |Y2| = ||o2||.

In the literature, as far as we know, the preceding property was exhaustively applied
- but never explained in its full generality. The method of morphisms has been
described in detail over the years, however no one seems interested in the reason why
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the method works as well as it does. Indeed, Blass said that it was an empirical
fact that the proofs of inequalities between cardinal invariants of the continuum, in
general, could be reduced to the representation of such cardinal invariants as norms of
suitable objects of PV and immediately proceeded with the exhibition of morphisms.
We will come back to this empirical fact presently. Before that, we will see in the
next subsection that, even in a much more general theory which does not appear to be
directly related to our discussion – namely, the theory of pre-orders –, some natural
cardinal invariants are “Abelard and Eloise cardinals” and so they can be expressed
as norms of objects of Dial2(Sets)op (or even of PV, depending on the restriction on
the cardinalities and on the validity of the MHD conditions).

3.3 A Study Case – Unboundedness and Domination in Pre-orders

The notions of unboundedness and domination, that we have just defined for the
family of functions from ω into ω, can be defined for pre-orders in general (i.e., not
necessarily related to the set of natural numbers). Similarly, we can define general
pre-order versions of b, d.

Definition 3.4 (The cardinals b(P) and d(P))
Let (P,6) be a pre-order without a maximum element.

1. B ⊆ P is unbounded if

(∀x ∈ P)(∃y ∈ B)(y 66 x)

2. D ⊆ P is dominating if it is cofinal, i.e.,

(∀x ∈ P)(∃y ∈ D)(x 6 y)

3. b(P) = min{|B| : B ⊆ P is unbounded }.
4. d(P) = min{|D| : D ⊆ P is dominating }.

So, the previously defined small cardinals b and d are encompassed by this defini-
tion, since b = b(ωω,6∗) and d = d(ωω,6∗).

Notice also that, if (P,6) is a pre-order with a maximum element, then every subset
of P is bounded (and so, b(P) cannot be defined) and d(P) = 1 (since the singleton
of the maximum element will be a dominating subset of P). It follows that requiring
that the pre-order has no maximum element avoids a trivial, non-interesting case and
also allows us to, at once:

1. Have both cardinals b(P) and d(P) well-defined; and, moreover,

2. Look at the triple

(P,P,6)

as an object of Dial2(Sets)op and check that the second MHD condition holds
– which, in this particular case, corresponds to the fact that P is unbounded in
itself.
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The first MHD condition, in this case, is trivial since 6 is a reflexive relation, but
it is interesting to point out that the reflexivity of P together with the assumption of
non-existence of a maximum element correspond to the MHD non-triviality conditions,
and so if the pre-order P has size 6 c we will be able to look at the triple (P,P,6) as
an object of PV.

The attentive reader has already noticed that this is the particular case we have
promised earlier, where the MHD conditions have a natural and intuitive interpreta-
tion. It would be probably nice enough to have the theory on pre-orders giving us
a nice interpretation of MHD conditions; but in fact, we have more than that. It is
a simple formal exercise to check that b(P) and d(P) are both Abelard and Eloise
cardinals; more precisely,

d(P) = ||(P,P,6)||; and

b(P) = ||(P,P,�)||.
This is a first example of the phenomenon that it is quite usual that many natural

cardinal invariants of Set Theory may be expressed as norms of objects in versions of
Dialectica.

4 Blass’ empirical fact

Now we are able to present our Main Question – meaning that the phenomenon we
would like to understand in its full depth is the one described in what follows. We
have already commented on Blass’ empirical fact; let us quote him properly.

It is an empirical fact that proofs of inequalities between cardinal characteristics of the

continuum usually proceed by representing the characteristics as norms of objects in PV
and then exhibiting explicit morphisms between those objects.

(A. Blass, 1995 [3])

The main purpose of the da Silva/de Paiva collaboration is to answer the following:

Question 4.1 (The Main Question)
Why does that happen? Why cardinal characteristics of the continuum seem to
behave as they were part of the PV category?

So, one of the goals of this research is to circumscribe the effectivity of this method
and to discover why it works as well as it does; as scientists, we believe that empirical
facts must have a reasonable explanation.

Indeed, in all known references (at least those known to the authors so far), all
the described phenomena (representing these cardinals as norms and showing the
inequalities via morphisms) are presented, described and treated almost as if they
were “facts from Nature” – more or less in the sense of what Blass said about “the
empirical fact”. There are no efforts in the direction of explaining why does this
happen. We would like to give such an explanation.

In what follows, we will present some conjectural principles, some of them with
confirming evidence, for what we believe to be the first stones of the path towards
the answer to our “Main Question”.
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4.1 Conjectural Principles

Let us present our first two preliminary suggestions of principles.

Conjectural Principle 4.2 (The First Conjectural Principle)
Most of the known cardinal invariants of Set Theory are “∀belard and ∃loise cardinals”
– i.e., they may be represented as norms of objects in Dial2(Sets)op, or even in PV.

So, not only the morphisms are important when it comes to prove inequalities, but
equally the possibility of representation of such cardinals as norms.

Conjectural Principle 4.3 (The Second Conjectural Principle)
The cardinals b(P) and d(P), where P is a pre-order, are good archetypes for under-
standing what a cardinal invariant from Set Theory tries to capture.

That is, we believe that pre-orders may be regarded as archetypal structures – a
kind of “safe laboratorial environment” for our investigations.

In the next subsection, we present another study case as an evidence in favour of
these first two conjectural principles.

4.2 Another study case – Combinatorics of Ideals

As a confirming evidence for the first two conjectural principles, let us consider the
following study case: the so-called combinatorics of ideals ([15]).

There is much research done on cardinals defined in terms of ideals.

Definition 4.4 (Ideals over a set)
Let X be a non-empty set. A family I of subsets of X is said to be a (proper) ideal
if the following clauses hold:

1. ∅ ∈ I, X /∈ I;

2. If A,B ∈ I, then A ∪B ∈ I;

3. If A ∈ I and B ⊆ A, then B ∈ I.

The dual notion is the notion of (proper) filter – meaning that if I is an ideal then
the complements of the elements of I constitute a filter, and conversely. Intuitively,
ideals are formed by small sets – while filters are formed by large sets. Indeed, if X is
an infinite set, the easiest examples for these notions are, of course, the ideal of finite
sets and the filter of cofinite sets. As singletons are always expected to be small, it
follows that the only cases of interest for Set Theory are those where X is infinite.

When it comes to cardinals defined in terms of ideals, the ones related to the ideals
M and L – respectively, the ideal of meager subsets of R and the ideal of null subsets of
R – have shown themselves quite important for both Analysis and Topology; indeed,
some topics cannot be even discussed without considering them. Notice that both
ideals are σ-complete – that is, they are closed under countable unions.

Let us define the usual cardinal invariants related to ideals. For any given ideal I
of subsets of an infinite set X, one can define the following cardinal invariants:

Definition 4.5 (Cardinal invariants related to ideals)
Let I be an ideal of subsets of an infinite set X. We say that
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1. add(I) (the additivity of I) is the smallest size of a subfamily of I whose union is
not in I.

2. non(I) (the uniformity of I) is the smallest size of a subset of X which is not in
I.

3. cov(I) (the covering number of I) is the smallest size of a subfamily of I whose
union is X.

4. cof(I) (the cofinality of I) is the smallest size of a subfamily of I which is cofinal
in I.

Note that add(I) is a regular cardinal, and, if I is σ-complete, it is clearly an
uncountable cardinal. And if, besides σ-completeness, one formally assumes that I
includes all singletons, then the following inequalities hold:

ℵ1 6 add(I) 6 min{cov(I),non(I)}
6 max{cov(I),non(I)} 6 cof(I) 6 |I|.

With a few basic manipulations, one can also conclude (and this is an evidence of
the first principle) that all of these four invariants are norms of objects. Indeed, one
can easily check (or see details in [11]) that the following equalities hold:

Fact 4.6
Let X and I be as in the previous definitions. Then, the following equalities hold:
add(I) = ||(I, I, 6⊇)||
non(I) = ||(I, X, 63)||
cov(I) = ||(X, I,∈)||
cof(I) = ||(I, I,⊆)||

If we consider the twelve cardinals given by: ℵ1 and 2ℵ0 ; b and d; the four cardinal
invariants defined as above, in terms of M; and the four cardinal invariants defined
as above, in terms of L, then we get to the well-known Cichoń Diagram ([10]), which
we present below:

cov(L) // non(M) // cof(M) // cof(L) // 2ℵ0

b

OO

// d

OO

ℵ1 // add(L)

OO

// add(M) //

OO

cov(M) //

OO

non(L)

OO

In the preceding diagram, the arrows represent inequalities between those cardinals
which can be proved in ZFC; one also has that add(M) = min{b, cov(M)} and
cof(M) = max{d,non(M)}. These cardinals have huge influence on several fields
of Mathematics, and we refer to the encyclopaedic book of Bartoszinsky and Judah
([2]) for a comprehensive investigation of the cardinals of such diagram and their
relationship with a number of issues in Analysis and Topology.
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In the next subsection, as an evidence of the second conjectural principle, we will
see that, for very suitable (and reasonable) pre-orders, one can define very suitable
(and reasonable) ideals such that all four cardinals may be expressed either as b(P)
or as d(P).

4.3 Identifying “small” with “bounded”

Ideals capture the idea of “smallness” , meaning that elements of an ideal (for instance:
meager sets, null sets) are “small” in a certain sense. In fact, we could think of ideals
as a formalization of the notion of smallness, meaning that a certain property of
subsets of a set correspond to a notion of smallness if those subsets satisfying such a
notion form an ideal.

Let us define a reasonable notion of smallness over certain pre-orders. Consider
a pre-order P which is upward directed – i.e., any finite subset of the order has an
upper bound in the order (this is the only extra assumption we will make). For every
element x of such a pre-order, let Bx = {y ∈ P : y 6 x}. A subset Y of P is said to
be bounded if (as usual) there is some x ∈ P such that Y ⊆ Bx – i.e., Y is bounded if
there is an x which is an upper bound of Y .

Assuming upward directedness, one has that {Bx : x ∈ P} generates an ideal of
subsets of P, meaning that the family of all subsets of P which are included in some
Bx constitutes an ideal1. Let IP be such ideal: it is clear that the elements of IP are,
precisely, the bounded subsets of P, and so IP is the ideal of bounded subsets of P.

For this ideal of bounded subsets of an upward directed order, one could ask about
the values of the four cardinal invariants defined in the previous subsection. The first
author, together with H. Garcia, has done all the calculations in [11]. We suggest the
reader to also proceed with those calculations (but do not forget that we assume the
Axiom of Choice!) in order to get to the following:

Theorem 4.7 ([11])
Let (P,6) be an infinite, upward directed pre-order without a maximum element, and
consider its ideal IP of bounded subsets. Then, the following equalities hold:

add(IP) = non(IP) = b(P) and cov(IP) = cof(IP) = d(P).

The Axiom of Choice is (at least, apparently) very much needed in the proofs of
the preceding equalities; its role is to fix witnesses in some non-constructive way, as
usual and expected.

To illustrate the ideas, and in order to proceed with some comparison later on, let
us take from [11] a proof (using only the definitions) of a part of the previous theorem.

Fact 4.8
b(P) = add(IP)

1We have assumed upward directedness to ensure that the union of two bounded sets is also a bounded set.

However it is an interesting fact that directedness also ensures that, for infinite pre-orders P, b(P) is an infinite

cardinal - since all finite sets will be bounded. Moreover, the non-existence of maximum together with upward

directedness ensures that for every x ∈ P there is a y ∈ P such that x < y.
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Proof. Here goes a detailed proof of b(P) 6 add(IP): let {Yα : α < add(IP)} be a
family (of minimal size) of elements of IP whose union is not in IP – that is, a minimal
sized family of bounded subsets whose union is an unbounded subset. Pick (choice is
needed !), for every α < add(IP), a yα ∈ P such that Yα ⊆ Byα ; it should be clear
now that {yα : α < add(IP)} is necessarily an unbounded subset of P – otherwise the
unbounded union of the Yα’s would be included in the set Bz for z an upper bound
of {yα : α < add(IP)}. It follows that

b(P) 6 |{yα : α < add(IP)}| 6 add(IP).

The argument for the reverse inequality is similar, mutatis mutandis.

In the following subsection, we will argue that this foreseeable procedure of “getting
a witness for this from a witness for that” , say, is captured precisely by the morphisms
– meaning that, after writing down the proofs using only the definitions, then all
arguments can be successfully encoded by morphisms.

4.4 More conjectures and remarks

Here goes our third conjectural principle.

Conjectural Principle 4.9 (The Third Conjectural Principle)
If we believe that most of the cardinal invariants from Set Theory are naturally
expressable as norms of objects of Dial2(Sets)op, then it should be also natural that
the inequalities between such cardinal invariants will be established via morphisms
of this category – and, indeed, such naturality shows itself by the fact that any
reasonable, expected proof can be turned into a proof via morphisms.

That is, we believe that even if we try not to use morphisms in the proof of some
inequality between Abelard and Eloise cardinals, then the predictable procedure of
getting witnesses during the proof – as we have done when proving b(P) 6 add(IP)
in the preceding subsection – would bring, encoded in disguise, the morphisms them-
selves. Let us use the very same example of the previous subsection in order to (or, at
least, try to) convince the reader about that: a “morphisms proof” of b(P) 6 add(IP)
would consist in the exhibition of a pair of functions witnessing (P,P, 6>) 6 (IP, IP, 6⊇).
Let

ϕ : x ∈ P 7→ Bx ∈ IP,
ψ : Y ∈ IP 7→ y ∈ P,

where y is chosen such that Y ⊆ By. Clearly, Y 6⊆ Bx implies y 
 x. So, (ϕ,ψ) is a
morphism from (IP, IP, 6⊇) to (P,P, 6>), as desired. And it is also obvious that both
functions above (the constituents of the morphism) are nothing more than “witnesses
choosers”, say; recall that the Bx are used in the definition of boundedness.

Furthermore, the categorical approach has also a great advantage. Given an object
o = (A,B,E), the dual object of o will be given by

o∗ = (B,A,E∗)
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(where bE∗a if, and only if, ¬aEb)2.

For example, consider the four cardinal invariants defined in terms of ideals; it is
immediate from Fact 4.6 that add(I) and cof(I) are norms of dual objects, as well as
non(I) and cov(I). The cardinals b(P) and d(P) are also norms of dual objects.

A modest contrapositive check shows that if (ϕ,ψ) is a morphism from o2 to o1
then (ψ,ϕ) is a morphism from o∗1 to o∗2, and therefore we can say that every proof
counts as two – i.e., the following proposition holds:

Proposition 4.10 (Every proof via morphisms counts as two)
If o1 6GT o2, then o∗2 6GT o

∗
1 – and therefore ||o∗2|| 6 ||o∗1||.

So, if we prove via morphisms that

b(P) = add(IP)

then we have, by duality,

d(P) = cof(IP).

Of course, the same happens to the equalities b(P) = non(IP) and d(P) = cov(IP);
we may prove the first and get the second for free3.

We are very close to the point we got to in this research programme, so far. We
present our fourth (and last) conjectural principle; and it will become clear that we
keep the faith in Category Theory to proceed with our search for the full understand-
ing of Blass’ empirical fact.

Conjectural Principle 4.11 (The Fourth Conjectural Principle)
Even believing that we are able to increase the comprehension of Blass’ empirical fact
through the investigation of pre-orders (and their intrinsic notions of unboundedness
and domination), the more profound and general answers will come from Category
Theory.

For instance, the first obvious attempt would be consider pre-orders as posetal
categories – i.e., categories where arrows are unique whenever they exist, and in this
case, as expected, x→ y ⇐⇒ x 6 y. Various natural questions emerge.

Question 4.12
What would be the categorical features which constitute counterparts of the notions
of unboundedness and domination in this case ? What would be the generalizations
of these features to other categories ? Is there some general, categorical procedure of
which Blass’ empirical fact is just a particular case ?

Let us proceed with a little less obvious attempt.
As it should be clear by now, the authors believe that a norm is a kind of dominating

number (as its dual is a kind of unbounding number), so it is natural to try to find

2We also ask the reader to check that, while the first MHD condition ensures that the norm ||o|| is well-defined

for every object o ∈ PV, the second MHD condition does the same job for ||o∗||.
3The reader may also check that the previously mentioned equalities add(M) = min{b, cov(M)} and cof(M) =

max{d, non(M)} are, in fact, dual equalities as well – so one has just to establish (via morphisms) one of them,

and get the other for free.



Dialectica Categories, Cardinalities of the Continuum and Combinatorics of Ideals 17

conditions under which the existence of a certain function f : P1 → P2 implies d(P1) 6
d(P2) (for 〈P1,61〉 and 〈P2,62〉 pre-orders). It is easy to check the following theorem,
whose proof is inspired in the usual procedure with morphisms of Dial2(Sets)op:

Theorem 4.13
Let 〈P1,61〉 and 〈P2,62〉 be pre-orders and let f : P1 → P2 be a function such that

(i) f is cofinal (i.e., (∀y ∈ P2)(∃x ∈ P1)[y 62 f(x)]); and
(ii) ∀x, y ∈ P1[f(x) 62 f(y) =⇒ x 61 y].

Under these assumptions, one has d(P1) 6 d(P2).

Proof. Let D ⊆ P2 be a minimal sized cofinal set, i.e., D is dominating and |D| =
d(P2).

For every x ∈ P1, we can fix (via Axiom of Choice) a dx ∈ D such that f(x) 62 dx.
As f is cofinal, it is possible (again via Axiom of Choice) to fix, for every y ∈ P2,

a h(y) ∈ P1 such that y 62 f(h(y)).
It follows that, given x ∈ P1, we have f(x) 62 f(h(dx)), and therefore x 61 h(dx).

So {h(d) : d ∈ D} is a cofinal subset of P1.
Thus, d(P1) 6 d(P2).

Again, consistently with our fourth conjectural principal, we would like to interpret
what is happening in a categorical way:

Question 4.14
Consider the function f of the previous theorem as a functor between the posetal
categories P1 and P2. What are, precisely, the features of such functor ? Were these
features previously investigated in the literature, in a more general setting? And
what would be the consequences of having such a functor between two categories in
general?

The authors believe that answers to these questions could lead to insights for the
explanation of Blass’ empirical fact.

5 Final remarks and open questions

The authors have increased considerably their understanding of Blass’ empirical fact
since the beginning of their collaboration, and we have decided to share the initial
results and conjectures with the community of Brazilian logicians in the XVII EBL
(Brazilian Logic Meeting, Petrópolis, 2014) – and with the broader audience at the V
UNILOG (Universal Logic Congress and School, Istambul, 2015). However, there is
still a lot of work to be done, and both the presentation of this work at the referred
events and the writing of this paper made us realize some of the directions that can be
taken in the continuation of this research. We end up with a few more open questions.

Question 5.1
Check how much of the Axiom of Choice is needed for the calculations. Are weaker
versions of choice enough for some applications ? What can be done only with the
Axiom of Countable Choice, or the Axiom of Countable Choice for countable families
of non-empty subsets of R, or the Principle of Dependent Choices, etc.?
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Besides this issue on the possible role of weaker forms of the Axiom of Choice, there
is also a more profound question regarding choice.

Question 5.2
Could the “morphisms method” survive without the Axiom of Choice? What could
be done in a choiceless context?

As described, the functions which constitute of the morphisms may be viewed, at
least in some standard cases, as “witnesses choosers”. Such witnesses are, in general,
fixed using the Axiom of Choice. Is there some alternative path here? Or is the
Axiom of Choice essential in this context? It would be very interesting, for example,
to get to an equivalence of the Axiom of Choice in terms of the norms/morphisms
language – or, more likely, in terms of the morphism language4.

Still on the previous question, it is interesting to remark that the use of the Axiom
of Choice for fixing witnesses can be entirely avoided in all cases where the sets under
consideration are well-ordered, since a canonical choice is available (just take the
minimal witness) – so, in particular, there is no need for the Axiom of Choice in the
cases where the constituent sets of the objects are countable ones.

Problem 5.3
We would also like to attack the categorical problem of describing the structure of
PV and Dialectica; for instance, the existence of NNO (natural number objects) in
Dialectica was already addressed by the authors together with Charles Morgan ([26]).

The following question could be considered as a particular case of the previous
problem, but we would like to give it some own weight.

Question 5.4
On the structures of PV and Dialectica: what about the usual constructions of prod-
ucts and co-products, are they closed under the MHD conditions? Or, in a more
general fashion, how much of the MHD conditions could survive in a purely categor-
ical approach?

The question about the non-constructible aspects of the second MHD condition
(see discussion right after the definitions in Subsection 2.3) is included in the previous
question.

Finally, we present the following question:

Question 5.5
There are notions of Category Theory which carry some similarities with Dialectica
Categories. Obvious examples include the well-known Galois connections (see, e.g.,

4In a choiceless environment, we would not be able to consider that every set has a cardinal which is an aleph,

but it would be still possible to consider statements on injective and/or surjective functions; recall also that the

Schröder-Bernstein-Cantor holds in ZF. So, even without speaking properly about norms as cardinals, we could

still speak about morphisms and equipotence (or domination) between subsets of sets in certain triples.
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Examples 6.26 of [1]) or the Chu Constructions (see [25]). Do these notions have
something to say about Blass’ empirical fact?
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