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Abstract Much has been said about intuitionistic and classical logical systems since
Gentzen’s seminal work. Recently Prawitz, and others, have been discussing how to
put together Gentzen’s systems for classical and intuitionistic logic in a single unified
system. We call Prawitz’ proposal the Ecumenical System, following the terminology
introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent
calculus, as opposed to the original natural deduction version, and state some proof
theoretical properties of the system. We reason that sequent calculi are more amenable
to extensive investigation using the tools of proof theory, such as cut-elimination
and rule invertibility, hence allowing a full analysis of the notion of Ecumenical
entailment. We then present some extensions of the Ecumenical sequent system and
show that interesting systems arise when restricting such calculi to specific fragments.
This approach of a unified system enabling both classical and intuitionistic features
sheds some light not only on the logics themselves, but also on their semantical
interpretations as well as on the proof theoretical properties that can arise from
combining logical systems.
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1 Introduction

In 1935 Gerhard Gentzen introduced sequent calculi for classical (LK) and intuitionistic
(LJ) first order logics (see Gentzen (1969) for the collected works) saying that this
was “in order to be able to enunciate and prove the Hauptsatz in a convenient form”.
Gentzen thought he had “to provide a logical calculus specially suited for this purpose”,
because his favourite system, natural deduction (given by systems NK and NJ for
classical and intuitionistic logics), could not be used to produce such a proof.1

According to Gentzen, for the purpose of proving the Hauptsatz “the natural
calculus proved unsuitable”. As he explains

“for although it [the natural deduction calculus] already contains the prop-
erties essential to the validity of the Hauptsatz, it does so only with respect
to its intuitionistic form, in view of the fact that the law of excluded middle
occupies a special position in relation to these properties”.

In the case of LK, Gentzen continues

“there exists complete symmetry between ∧ and ∨, ∀ and ∃. All of the
connectives ∧, ∨, ∀, ∃ and ¬ have, to a large extend, equal status in the system:
no connective ranks notably above any other connective. The special position
of the negation, in particular, which constituted a troublesome exception in
the natural calculus [natural deduction], has been completely removed in a
seemingly magical way. The manner in which this observation is expressed is
undoubtedly justified since I myself was completely surprised by this property
of the ‘LK-calculus’ when first formulating that calculus. The ‘law of the
excluded middle’ and the ‘elimination of double negation’ are implicit in the
new inference schemata - the reader may convince himself of this by deriving
both of them within the new calculus - but they have become completely
harmless and no longer play the least special role in the consistency proof that
follows.”

Thirty years later, Prawitz showed, in his doctoral work (Prawitz (1965)), how to
actually prove the Hauptsatz for natural deduction, both for intuitionistic and classical
logics. Ever since, NJ and NK, together with LJ and LK, have been staples of proof
theory. Nevertheless, every new wave of different proof systems (Schütte’s calculus,
Display Calculi, Deep Inference, Nested systems, Labelled systems, etc) has improved
our understanding of these basic systems. Regarding sequent systems, while in LK
and LJ intuitionistic and classical behaviours are determined by a restriction on
contexts, Maehara’s mLJ (Maehara (1954)) is a multiple-conclusion intuitionistic
sequent system with a context restriction only in the rules for right implication and
right universal quantification. Interestingly, this distinction also appears when adding
to sequents semantical information using labels as in Viganò (2000) and Dyckhoff

and Negri (2012). On the other hand, in Fitting (2014) such labels were related with
nestings and indexed tableaux, hence giving a semantical interpretation to nestings.
And finally, in Pimentel (2018), we showed how the sequentialisation of nested systems

1 It turns out that Gentzen had a normalisation result for intuitionistic logic. This original proof was
found and published in von Plato (2008).
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transpose this interpretation back to LJ, thus allowing a clearer view of sequent rules.
With a totally different inspiration (using ideas from Girard’s linear logic and resource
sensitivity), we have introduced FIL – Full Intuitionistic Logic (de Paiva and Pereira
(2005)) – a multiple-conclusion sequent system provably equivalent to LJ, where an
indexing device allows us to keep track of dependency relations between formulae.

Common to all such systems is the need of different sets of rules and/or structures
for capturing the intuitionistic behaviour. It is reasonable to ask if it is possible to
naturally combine classical and intuitionistic systems, so that they can live peacefully
in a single system. Citing Girard (1987)

“By the turn of this century the situation concerning logic was quite simple:
there was basically one logic (classical logic) which could be used (by changing
the set of proper axioms) in various situations. Logic was about pure reasoning.
Brouwer’s criticism destroyed this dream of unity: classical logic was not
suited for constructive features and therefore it lost its universality. Now by
the end of the century we are faced with an incredible number of logics –
some of them only named ‘logic’ by antiphrasis, some of them introduced on
serious grounds. Is logic still about pure reasoning? In other words, could there
be a way to reunify logical systems – let us say those systems with a good
sequent calculus – into a single sequent calculus? Is it possible to handle the
(legitimate) distinction classical/intuitionistic not through a change of system,
but through a change of formulas? Is it possible to obtain classical effects by a
restriction to classical formulas? ”

Several approaches have been proposed for combining intuitionistic and classical
logics (see e.g. Liang and Miller (2011); Dowek (2016)), many of them inspired by Gi-
rard’s polarised system LU (Girard (1993)). More recently, Prawitz chose a completely
different approach by proposing a natural deduction system that we are calling the Ec-
umenical System (Prawitz (2015)). While it also took into account meaning-theoretical
considerations, it is more focused on investigating the philosophical significance of
the fact that classical logic can be translated into intuitionistic logic.

We start this work by presenting a single-conclusion sequent calculus for the
Ecumenical system, LEci, given by a direct transformation from the natural deduction
system. Using invertibility results, we show not only how to obtain a “purer” system
mLEci′, with less introduction of negations on premises (when rules are read bottom-
up), but also prove the main result of this paper:

Ecumenical entailments are intrinsically intuitionistic, but become classical
for classical succedents.

Furthermore, from the standard Kripke interpretation for first-order intuitionistic
logic, we present an Ecumenical nested system, where nestings correspond to worlds.
Nested systems (Bull (1992); Kashima (1994); Brünnler (2009); Poggiolesi (2009))
are extensions of the sequent framework where a single sequent is replaced with a tree
of sequents. The logical rules then act on the nestings, possibly moving formulae from
one nesting to another. This finer way of representing systems enables both locality
and modularity by decomposing standard sequent rules into smaller components.
Although we will not explore modularity in this work (since we will not extend the
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Ecumenical logic e.g. with modalities), we will use locality in order to relate LEci
with mLEci, a multiple-conclusion Ecumenical sequent system.

We finish this work by presenting the intuitionistic and classical fragments of
mLEci. It is interesting to note that, while the intuitionistic fragment is nothing else
than Maehara’s mLJ, the classical fragment allows for a notion of goal directed proof
search (Miller et al. (1991)), where right formulae are totally decomposed before left
rules are applied.

We then conclude by relating this work with some other ideas of “Ecumenical”
entailments, and by presenting future research directions.

Outline. The rest of the paper is organised as follows. In Section 2 we present Prawitz’
natural deduction system (NEci); the Ecumenical sequent system LEci is introduced
in Section 3, and the cut-elimination property is proved; Section 3.1 shows other
proof-theoretical properties of LEci, it presents a “purer” Ecumenical sequent system,
and determines the Ecumenical concept of entailments; Section 4 brings the semantical
interpretation of Ecumenical systems; in Section 5, we present a nested sequent system
and a multiple-conclusion sequent system that are sound and complete with respect
to the semantics presented in Section 4; Section 6 shows non-hybrid fragments of
Ecumenical systems and Section 7 concludes the paper.

2 Ecumenical natural deduction system

Dag Prawitz proposed a natural deduction system (Prawitz (2015)) where classical and
intuitionistic logic could coexist in peace. In this system, the classical logician and the
intuitionistic logician would share the universal quantifier, conjunction, negation and
the constant for the absurd, but they would each have their own existential quantifier,
disjunction and implication, with different meanings. Prawitz’ main idea is that these
different meanings are given by a semantical framework that can be accepted by
both parties. The surprising aspect of Prawitz’ system is its ability to share negations
between the classical and the intuitionistic system, since many consider negation
subject to the controversy between classical and intuitionistic logic, as implication is.

The language L used for Ecumenical systems is described as follows. Classical
and intuitionistic n-ary predicate letters (Pn

c , P
n
i , . . .) co-exist in L but have different

meanings. We will use a subscript c for the classical meaning and i for the intuition-
istic, dropping such subscripts when formulae/connectives can have either meaning.
The logical connectives {⊥,¬,∧,∀} are common for classical and intuitionistic frag-
ments, while {→i,∨i,∃i} and {→c,∨c,∃c} are restricted to intuitionistic and classical
interpretations, respectively. In order to avoid clashes of variables we make use of a
denumerable set a, b, . . . of special variables called parameters, which do not appear
quantified.

In Fig. 1 we present NEci, a natural deduction first-order Ecumenical system with
the more modern sequent presentation. Sequents in NEci have the form Γ ⇒ C, with Γ
a set of Ecumenical formulae and C a formula. In the rules for quantifiers, the notation
A[a/x] stands for the substitution of a for every (visible) instance of x in A. In the
rules ∃iE,∀I, a is a fresh parameter, i.e., it does not occur in Γ, A, B.
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Γ ⇒ A→i B Γ ⇒ A
Γ ⇒ B

→i E
Γ, A⇒ B

Γ ⇒ A→i B
→i I

Γ ⇒ A→c B Γ ⇒ A Γ ⇒ ¬B
Γ ⇒ ⊥

→c E
Γ, A,¬B⇒ ⊥
Γ ⇒ A→c B

→c I

Γ ⇒ A1 ∧ A2

Γ ⇒ A j
∧E j

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B ∧I

Γ ⇒ A Γ ⇒ ¬A
Γ ⇒ ⊥

¬E
Γ, A⇒ ⊥
Γ ⇒ ¬A ¬I

Γ ⇒ A ∨i B Γ, A⇒ C Γ, B⇒ C
Γ ⇒ C

∨iE
Γ ⇒ A j

Γ ⇒ A1 ∨i A2
∨iI j

Γ ⇒ A ∨c B Γ ⇒ ¬A Γ ⇒ ¬B
Γ ⇒ ⊥

∨cE
Γ,¬A,¬B⇒ ⊥
Γ ⇒ A ∨c B

∨cI

Γ ⇒ Pn
c Γ ⇒ ¬Pn

i

Γ ⇒ ⊥
Ec

Γ,¬Pn
i ⇒ ⊥

Γ ⇒ Pn
c

Ic

Γ ⇒ ∃c x.A Γ ⇒ ∀x.¬A
Γ ⇒ ⊥

∃cE
Γ,∀x.¬A⇒ ⊥
Γ ⇒ ∃c x.A

∃cI

Γ ⇒ ∃i x.A Γ, A[a/x]⇒ B
Γ ⇒ B

∃iE
Γ ⇒ A[a/x]
Γ ⇒ ∃i x.A

∃iI

Γ ⇒ ∀x.A
Γ ⇒ A[a/x] ∀E

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A ∀I

Γ ⇒ ⊥
Γ ⇒ A ⊥E A, Γ ⇒ A init

Fig. 1 Ecumenical natural deduction system NEci. In rules ∀R and ∃iE, the parameter a is fresh.

The propositional fragment of the natural deduction Ecumenical system proposed
by Prawitz has been proved normalising, sound and complete with respect to intuition-
istic logic’s Kripke semantics in Pereira and Rodriguez (2017).

The rules for intuitionistic implication are the traditional ones, while the rules
for classical implication make sure that A →c B is treated as ¬A ∨c B, its classical
rendering. The surprising facts are that (i) one can have a single constant for absurdity
⊥ (instead of two, one intuitionistic and one classical, taking that absurd as the unit of
disjunction, of which we have two variants) and (ii) that the intuitionistic and classical
negations coincide. If negation was simply implication into false (as it is the case for
intuitionistic negation) one might expect two negations, one intuitionistic and one
classical. But the classical implication of the system is just a coding trick, it does not
even satisfy modus ponens (see Section 3.1).

3 The system LEci

The main difference between sequent and natural deduction systems is that, in the
former, formulae in the antecedent and succedent of a sequent have the same status,
being constructed top-down by introducing connectives; in the later, rules act only
on the succedent of sequents, and elimination rules often produce simpler formulae,
with less connectives. Hence, in order to transform a natural deduction calculus into
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a sequent one, it is necessary to reformulate the elimination rules so to introduce
connectives for formulae in the left hand-side of sequents.

This reformulation is usually done either via direct translations, as in von Plato
(2003); Englander et al. (2015) or via indirect translations, using cuts (see bellow).
While direct translations have the advantage of not introducing extra steps that should
later on be proved sound (via e.g. cut-elimination), the indirect ones are more natural
and simpler, as we will illustrate here.

The sequent calculus cut rule expresses the fact that, if a formula A is used both
as hypothesis and conclusion in two different sequents, these can be combined in a
sequent without these occurrences of A

Γ1 ⇒ A Γ2, A⇒ C
Γ1, Γ2 ⇒ C cut

where Γ1, Γ2 are multisets of formulae.
As mentioned before, natural deduction introduction rules become sequent right

rules. Hence, for example,

Γ, A⇒ B
Γ ⇒ A→i B

→i I 7→
Γ, A⇒ B

Γ ⇒ A→i B
→i R

Now, since any natural deduction rule of the shape

Γ ⇒ A1 . . . Γ ⇒ An

Γ ⇒ A

can be interpreted as “A is an immediate consequence of A1, . . . , An”, every such a
rule is equivalent to the primitive valid sequent A1, . . . , An ⇒ A. It turns out that
left sequent rules can be formulated using these valid sequents and cuts (Troelstra
and Schwichtenberg (1996); Negri and von Plato (2001)). To illustrate the process,
consider the following instance of a primitive sequent in NEci: A ∨c B,¬A,¬B⇒ ⊥.
A sequent left rule for classical disjunction can be achieved as follows

Γ1 ⇒ ¬A
Γ2 ⇒ ¬B A ∨c B,¬A,¬B⇒ ⊥

Γ2, A ∨c B,¬A⇒ ⊥ cut

Γ1, Γ2, A ∨c B⇒ ⊥ cut
7→

Γ1 ⇒ ¬A Γ2 ⇒ ¬B
Γ1, Γ2, A ∨c B⇒ ⊥

Observe that the multiplicative nature of the cut rule forces a multiplicative version
of the sequent rules, where contexts may split bottom-up. Hence, for guaranteeing
completeness, the sequent system resulting from this process should have explicit left
rules for weakening and contraction

Γ1 ⇒ C
Γ1, Γ2 ⇒ C

WL
Γ1, Γ2, Γ2 ⇒ C
Γ1, Γ2 ⇒ C

CL

where Γ1, Γ2 are non-empty multisets. In order to avoid that, we present, in Fig. 2,
the weakening and contraction-free sequent calculus LEci. Observe that all rules are
additive, i.e., with contexts copied bottom-up, e.g.

Γ ⇒ ¬A Γ ⇒ ¬B
Γ, A ∨c B⇒ ⊥

∨cL
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Γ, A→i B⇒ A Γ, B⇒ C
Γ, A→i B⇒ C

→i L
Γ, A⇒ B

Γ ⇒ A→i B
→i R

Γ, A→c B⇒ A Γ ⇒ ¬B
Γ, A→c B⇒ ⊥

→c L
Γ, A,¬B⇒ ⊥
Γ ⇒ A→c B

→c R

Γ, A, B⇒ C
Γ, A ∧ B⇒ C ∧L

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B ∧R

Γ,¬A⇒ A
Γ,¬A⇒ ⊥ ¬L

Γ, A⇒ ⊥
Γ ⇒ ¬A ¬R

Γ, A⇒ C Γ, B⇒ C
Γ, A ∨i B⇒ C

∨iL
Γ ⇒ A j

Γ ⇒ A1 ∨i A2
∨iR j

Γ ⇒ ¬A Γ ⇒ ¬B
Γ, A ∨c B⇒ ⊥

∨cL
Γ,¬A,¬B⇒ ⊥
Γ ⇒ A ∨c B

∨cR

Γ, A[a/x]⇒ C
Γ,∃i x.A⇒ C

∃iL
Γ ⇒ A[a/x]
Γ ⇒ ∃i x.A

∃iR

Γ ⇒ ∀x.¬A
Γ,∃c x.A⇒ ⊥

∃cL
Γ,∀x.¬A⇒ ⊥
Γ ⇒ ∃c x.A

∃cR

Γ,∀x.A, A[a/x]⇒ C
Γ,∀x.A⇒ C ∀L

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A ∀R

Γ ⇒ ¬Pn
i

Γ, Pn
c ⇒ ⊥

Lc
Γ,¬Pn

i ⇒ ⊥

Γ ⇒ Pn
c

Rc

Γ,⊥ ⇒ A ⊥L
Γ ⇒ ⊥
Γ ⇒ A W A, Γ ⇒ A init

Fig. 2 Ecumenical sequent system LEci. In rules ∀R and ∃iL, the parameter a is fresh.

Following the same lines as in, e.g. Negri and von Plato (2001), it is easy to see that:
(i) the additive and multiplicative versions of rules are equivalent; and (ii) rules WL

and CL are (height-preserving – see Def. 3) admissible in LEci.

Definition 1 Let S be a sequent system. An inference rule

S 1 · · · S n

S

is called admissible in S if S is derivable in S whenever S 1, . . . , S n are derivable in S.

Since cuts were introduced in the translation described above, it is essential to
show that the cut rule does not introduce any extra power to the system, that is, that
provability remains the same if we add to LEci the cut rule. This is known as the
cut-elimination property.

In order to prove cut-elimination for LEci, we use the following Ecumenical weight
for formulae (Pereira and Rodriguez (2017)).

Definition 2 The Ecumenical weight (ew) of a formula in L is recursively defined as

– ew(Pn
i ) = ew(⊥) = 0;

– ew(A ? B) = ew(A) + ew(B) + 1 if ? ∈ {∧,→i,∨i,∃i,∀};
– ew(¬A) = ew(A) + 1;
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– ew(A ◦ B) = ew(A) + ew(B) + 4 if ◦ ∈ {→c,∨c};
– ew(Pn

c) = 4;
– ew(∃cx.A) = ew(A) + 4.

Intuitively, the Ecumenical weight measures the amount of extra information needed
(the negations added) in order to define the classical connectives from the intuitionistic
ones (see Sections 3.1 and 4).

The following are the usual definitions of height of derivations and cut-height.

Definition 3 The height of a derivation is the greatest number of successive applica-
tions of rules in it, where an axiom has height 0. The cut-height of an instance of the
cut rule in a derivation is the sum of heights of the derivation of the two premises of
cut.

The admissibility of height-preserving weakening and contraction left rules in
LEci allows for proving that LEci has the cut-elimination property.

Theorem 1 The rule cut is admissible in the system LEci.

Proof The proof is by the usual Gentzen method, using as inductive measure the pair
(n,m), where n is the Ecumenical weight of the cut formula and m is the cut-height of
the instance of cut. The principal cases either eliminate the top-most cut or substitute
it for cuts over formulae with smaller Ecumenical weight e.g.

π1
Γ1, A,¬B⇒ ⊥
Γ1 ⇒ A→c B

→c R

π2
Γ2 ⇒ A

π3
Γ2 ⇒ ¬B

A→c B, Γ2 ⇒ ⊥
→c L

Γ1, Γ2 ⇒ ⊥
cut

{

π2
Γ2 ⇒ A

π3
Γ2, A⇒ ¬B

π1
Γ1, A,¬B⇒ ⊥

Γ1, Γ2, A⇒ ⊥
cut

Γ1, Γ2, Γ2 ⇒ ⊥
cut

Γ1, Γ2 ⇒ ⊥
CL

Observe that, in the original cut, ew(A →c B) = ew(A) + ew(B) + 4 while the other
cuts have associated Ecumenical weights ew(A) and ew(B) + 1, hence being strictly
smaller. For the classical existential case

π1
Γ1,∀x.¬A⇒ ⊥
Γ1 ⇒ ∃cx.A

∃cR

π2
Γ2 ⇒ ∀x.¬A
∃cx.A, Γ2 ⇒ ⊥

∃cL

Γ1, Γ2 ⇒ ⊥
cut

{

π2
Γ1,∀x.¬A⇒ ⊥

π1
Γ2 ⇒ ∀x.¬A

Γ1, Γ2 ⇒ ⊥
cut

Hence the Ecumenical weight on the cut formula passes from ew(∃cx.A) = ew(A) + 4
to ew(∀x.¬A) = ew(A) + 2.

The non-principal cuts can be flipped up, generating cuts with smaller cut-height,
e.g.

π1
Γ1 ⇒ C

π2
C, Γ2,¬A,¬B⇒ ⊥

C, Γ2 ⇒ A ∨c B
∨cR

Γ1, Γ2 ⇒ A ∨c B cut
{

πw
1

Γ1,¬A,¬B⇒ C
π2

C, Γ2,¬A,¬B⇒ ⊥
Γ1, Γ2,¬A,¬B⇒ ⊥ cut

Γ1, Γ2 ⇒ A ∨c B
∨cR
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where πw
1 is the weakened version of π1.

Note that applications of classical rules are restricted to having a⊥ in the succedent,
hence they allow for more strict applications of the cut rule. In fact, if the cut-formula
in the right premise is classical and principal, then C should be ⊥, since conclusion
sequents in all classical left rules have ⊥ as the succedent. ut

Finally, the equivalence between additive and multiplicative rules as well as the cut-
elimination result entails the equivalence between sequent and natural deduction
systems.

Corollary 1 The systems NEci and LEci are equivalent.

Finally, a word about the design of the system LEci. The reason for defining an-
tecedents of sequents as multisets is that implementations using sets may generate
loops on proof search. The price to pay for having an intuitionistic, contraction-free
sequent system is the copy (when seen bottom-up) of the implication formula into the
left premise in the rules→c L,→i L and ¬L, in order to guarantee completeness (try
proving the theorem ¬¬(A ∨i ¬A)). This also may cause loops on implementations,
which could be easily avoided e.g. using the techniques in Dyckhoff (1992). Since loop
checking can also be avoided with clever implementations (for example by shuffling
contexts), we prefer to use the rules as proposed here for simplicity.

3.1 About provability, proofs and proof systems

Denoting by `S A the fact that the formula A is a theorem in the proof system S, the
following theorems are easily provable in LEci.

1. `LEci (A→i B)→i (A→c B).
2. `LEci (A ∨c B)↔i ¬(¬A ∧ ¬B)
3. `LEci (A→c B)↔i ¬(A ∧ ¬B).
4. `LEci (∃cx.A)↔i ¬(∀x.¬A).

These theorems are of interest since they relate the classical and the intuitionistic
operators. In particular, observe that the intuitionistic implication implies the classical
one, but not the converse, that is, 0LEci (A→c B)→i (A→i B) in general. Moreover,
the classical connectives can be defined using negation, conjunction and the universal
quantifier. This will be heavily exploited in the semantic definition of Ecumenical
systems (see Section 4).

Note also that `LEci (A →c ⊥) ↔i (A →i ⊥) ↔i (¬A) which means that the
Ecumenical system defined in Fig. 2 does not distinguish between intuitionistic or
classical negations, thus they can be called simply ¬A. We prefer to keep the negation
operator in the language since the calculi presented in this work make heavy use of it.

On the other hand,

i. `LEci A ∨c ¬A but 0LEci A ∨i ¬A
ii. `LEci (¬¬A)→c A but 0LEci (¬¬A)→i A

iii. `LEci (A ∧ (A→i B))→i B
iv. 0LEci (A ∧ (A→c B))→i B in general.



10 Elaine Pimentel et al.

v. Γ ⇒ B is provable in LEci iff `LEci
∧
Γ →i B

Observe that (iii.) means that modus ponens is intuitionistically valid, while (iv.)
implies that classical modus ponens is not intuitionistically valid, in general. But
maybe more importantly, (v.) means that

Fact 1 Validity of a sequent in any semantical interpretation of LEci should corre-
spond to provability of the corresponding intuitionistic implicational formula.

This not only corroborates the results in Avigad (2001) and Pereira and Rodriguez
(2017) (see next section), but it shows a very interesting perspective on Ecumenical
entailment: it is intuitionistic!

That is, even though some formulae carry with them the notion of classical truth,
the logical consequence is intrinsically intuitionist. As it should be, since the ecumen-
tical system embeds the classical behaviour into intuitionistic logic.

Moreover, observe that Fact 1 also implies that the rule→i R is invertible.

Definition 4 Let S be a sequent system. An inference rule with premises S 1, . . . , S n

and conclusion S is called invertible in S if the rules S
S 1
, . . . , S

S n
are admissible in S.

Proposition 1 The only invertible rules in LEci are:→i R,→c R,∧R,∧L,¬R,∨iL,∨cR,
∃cR,∃iL,∀R,∀L,Rc.

Proof Proving invertibility requires induction on the height of derivations, where all
the possible rule applications have to be considered. For example, to prove that→i R
is invertible, the goal is to show that Γ, A ⇒ B is derivable whenever Γ ⇒ A →i B
is derivable. The result follows by a case analysis on the shape of the derivation of
Γ ⇒ A→i B. Consider, e.g., the case when Γ = C ∧ D, Γ′ and the last rule applied is
∧L, i.e., consider the following derivation

C,D, Γ′ ` A→i B
C ∧ D, Γ′ ` A→i B ∧L

By the inductive hypothesis, C,D, Γ′, A ` B is derivable and the following holds:

C,D, Γ′, A ` B
C ∧ D, Γ′, A ` B ∧L

as wanted. On the other hand, e.g., ∨cL is not invertible: if Pn
i ,Q

m
i are different atomic

propositions, the sequent Pn
i ,Q

m
i ∨c Qm

i ⇒ Pn
i is trivially provable, but Pn

i ,Q
m
i ⇒ ⊥ is

not provable. ut

Since invertibility of rules implies that they can be eagerly applied, i.e., they can
be applied at any time without losing the provability, this result allows for a proposal
of a better Ecumenical sequent system from a proof theoretical point of view. Fig. 3
presents the rules of the system LEci′ that differ from LEci. In particular, observe
that the left rules for the classical connectives in LEci′ are particular instances of
their intuitionistic versions, where the consequent must be ⊥. In the sense that LEci′

introduces (bottom-up) less negations, one could say that it is “purer” than LEci.
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Γ ⇒ A Γ, B⇒ ⊥
Γ, A→c B⇒ ⊥

→c L
Γ, A⇒ ⊥ Γ, B⇒ ⊥

Γ, A ∨c B⇒ ⊥
∨cL

Γ, A[a/x]⇒ ⊥
Γ,∃c x.A⇒ ⊥

∃cL
Γ, Pn

i ⇒ ⊥

Γ, Pn
c ⇒ ⊥

Lc

Fig. 3 Some rules for the Ecumenical sequent calculus system LEci′. In ∃cL, the parameter a is fresh.

To preserve the “classical behaviour”, i.e., to satisfy all the principles of classical
logic e.g. modus ponens and the classical reductio, it is sufficient that the main operator
of the formula be classical (Pereira and Rodriguez (2017)). Thus, “hybrid” formulae,
i.e., formulae that contain classical and intuitionistic operators may have a classical
behaviour. Formally,

Definition 5 A formula B is called externally classical (denoted by Bc) if and only if
B is a classical constant or its main operator is classical (that is:→c,∨c,∃c). A formula
C is classical if it is built from classical atomic predicates using only the connectives:
→c,∨c,∃c,¬,∧,∀ and the unit ⊥.

For externally classical formulae we can now prove the following theorems

1. `LEci (A→c Bc)→i (A→i Bc)
2. `LEci (A ∧ (A→c Bc))→i Bc

3. `LEci ¬¬Bc ⇒ Bc.

Moreover, notice that all classical right rules plus the right rules for the common
connectives in LEci (or LEci′) are invertible. Since invertible rules can be applied
eagerly when proving a sequent, this entails that classical formulae can be eagerly
decomposed. As a consequence, we have the following remarkable result.

Theorem 2 Let C be a classical formula and Γ be a multiset of Ecumenical formulae.
Then

`LEci

∧
Γ →c C iff `LEci

∧
Γ →i C.

Proof We have already shown that the intuitionistic implication entails the classical
one. For the other direction, consider the sequent∧

Γ →c C ⇒
∧

Γ →i C. (1)

By Proposition 1, the rules→i R and ∧L can be eagerly applied so that the sequent (1)
is provable iff ∧

Γ →c C, Γ ⇒ C (2)

is provable. The proof now follows by a case analysis.

i. Case C = ⊥. This case is trivial since we have already proved that LEci does not
distinguish between intuitionistic and classical negations.

ii. Case C = A→c B. The following is a proof of sequent (2)∧
Γ →c (A→c B), Γ, A,¬B⇒

∧
Γ Γ, A,¬B, A→c B⇒ ⊥∧

Γ →c (A→c B), Γ, A,¬B⇒ ⊥
→c L∧

Γ →c (A→c B), Γ ⇒ A→c B
→c R
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where the double bar means possible application of various rules.
Cases where C = ¬A, A∨c B,∃cx.A, Pn

c are analogous since the rules ¬R,∨cR,∃cR
and Rc introduce, bottom-up, empty succedents.

iii. Cases C = A ∧ B or C = ∀x.A. Since rules ∧R,∀R are invertible and do not
change the left context, C can be eagerly decomposed by applying such rules
until arriving to premises of the shape

∧
Γ →c C, Γ ⇒ C′ with C′ of the form

A′ →c B′,¬A′, A′ ∨c B′,∃cx.A′, Pn
c ,⊥. Hence

∧
Γ →c C, Γ, Γ′ ⇒

∧
Γ Γ, Γ′,C ⇒ ⊥∧

Γ →c C, Γ, Γ′ ⇒ ⊥
→c L∧

Γ →c C, Γ ⇒ C′ ?R

where Γ′ is the multiset determined by the rule ?R ∈ {→c R,¬R,∨cR,∃cR,Rc} (if
C′ = ⊥ then no rule is applied and Γ′ = ∅). Now, C can be decomposed on the
left, with left conjunction and universal quantification rules being applied so to
mimic the application of right rules for transforming C into C′. This process will
transform C into C′ in the left side of the left premise as well, and hence we have
the derivation

Γ, Γ′,C′ ⇒ ⊥
Γ, Γ′,C ⇒ ⊥

Finally, since Γ′,C′ ⇒ ⊥ is provable by Cases (i.) and (ii.), the result follows. ut

That is, the Ecumenical entailment, when restricted to classical succedents (an-
tecedents having an unrestricted form), is classical!

Wrapping up: entailments `LEci Γ ⇒ A are intrinsically intuitionistic. But when A is
classical, entailments can be read classically. And this justifies the Ecumenical view
of entailments in Prawitz’s original proposal.

4 A semantical view of ecumenical systems

In Avigad (2001), the negative translation was used to relate cut-elimination theorems
for classical and intuitionistic logics. Since part of the argumentation was given
semantically, a notion of Kripke semantics for classical logic was stated, via the
respective semantics for intuitionistic logic and the double negation interpretation (see
also Ilik et al. (2010)). In Pereira and Rodriguez (2017) a similar definition was given,
but under the Ecumenical approach. In the following, we will present an extension of
the semantics given in Pereira and Rodriguez (2017) so as to handle also the quantifiers.

Definition 6 An Ecumenical Kripke model is a triple MKE = 〈W, Σ,D〉 where (1)
W is a partially ordered set, (2) D is a function that assigns to each node w ∈ W
an inhabited set D(w) of parameters such that if w ≤ v, then D(w) ⊆ D(v), and (3)
Σ(k) ⊆ Atk such that if w ≤ v, then Σ(w) ⊆ Σ(v), where Atk is the set of atomic
sentences with parameters in D(k). LetMKE = 〈W, Σ,D〉 be an Ecumenical Kripke



An Ecumenical Notion of Entailment 13

model and w ∈ W. By induction in the construction of a formula A, we define the
forcing relationMKE ,w  A as follows

MKE ,w  Pn
i (a1, ..., an) iff Pn

i (a1, ..., an) ∈ Σ(w);
MKE ,w  ⊥ never holds;
MKE ,w  ¬A iff ∀ v ≥ w.MKE , v 1 A;
MKE ,w  A ∧ B iff MKE ,w  A andMKE ,w  B;
MKE ,w  ∀x.A(x) iff ∀v ≥ w, a ∈ D(v).MKE , v  A(a).
MKE ,w  A ∨i B iff MKE ,w  A orMKE ,w  B;
MKE ,w  A→i B iff ∀v ≥ w.MKE , v 1 A orMKE , v  B;
MKE ,w  ∃ix.A(x) iff ∃a ∈ D(w).MKE ,w  A(a).
MKE ,w  Pn

c(a1, ..., an) iff MKE ,w  ¬(¬Pn
i (a1, ..., an));

MKE ,w  A ∨c B iff MKE ,w  ¬(¬A ∧ ¬B);
MKE ,w  A→c B iff MKE ,w  ¬(A ∧ ¬B).
MKE ,w  ∃cx.A(x) iff MKE ,w  ¬(∀x.¬A(x)).

The Ecumenical consequence relation E is defined as usual: E Γ ⇒ A iff every
Ecumenical Kripke model of Γ is also a model of A. We will omit the model from the
notation when it is irrelevant or it can be inferred from the context.

The only differences between this formulation and the one presented in Pereira and
Rodriguez (2017) are the explicit definition of the interpretation of classical propo-
sitional variables and the interpretation of the quantifiers. Since Definition 6 is the
canonical Kripke interpretation for (first order) intuitionistic logic (Fitting (2014)),
and since the classical connectives are interpreted via the intuitionistic ones using
the double-negation translation, the results of soundness and completeness of the
semantical interpretation above w.r.t. the sequent system LEci are trivial.

Theorem 3 LEci is sound and complete w.r.t. the Ecumenical Kripke semantics, that
is, `LEci Γ ⇒ A iff E Γ ⇒ A.

We end this section by having a closer look into negation. Observe that ¬A ≡
A→c ⊥ ≡ A→i ⊥ can be interpreted in the following three different ways

a. MKE ,w  ¬A iff ∀ v ≥ w.MKE , v 1 A;
b. MKE ,w  A→i ⊥ iff ∀v ≥ w.MKE , v 1 A or v  ⊥;
c. MKE ,w  A→c ⊥ iffMKE ,w  ¬(A ∧ ¬⊥);

Since A ∧ ¬⊥ ≡ A, (a.) and (c.) are immediately equivalent. And, sinceMKE ,w  ⊥
never holds, (a.) and (b.) are also equivalent. However, although it seems that the choice
of words is irrelevant, there is a philosophical difference in the statements: for estab-
lishing that (a.) and (c.) are equivalent, we used the syntactical notion of equivalence,
while (a.) and (b.) express the exact same sentence, with different notations.

Nevertheless, it is interesting to note that in LEci the negation behaves classically.
In fact, analysing the derivations

(a) (b) (c)

Γ,¬A⇒ A
Γ,¬A⇒ ⊥ ¬L

Γ,¬A⇒ B W
Γ, A→i ⊥ ⇒ A Γ,⊥ ⇒ B ⊥L

Γ, A→i ⊥ ⇒ B
→i

Γ, A→c ⊥ ⇒ A Γ,⊥ ⇒ ⊥
⊥L

Γ, A→c ⊥ ⇒ ⊥
→c

Γ, A→c ⊥ ⇒ B W
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(a) is closer to (c) than to (b). Digging further, this is the desirable behaviour, since on
proving a sequent like Γ,¬(A ∧ ¬B)⇒ C starting (bottom-up) with the ¬L rule, one
should expect that C should be constrained to be ⊥, since the semantical definition of
A→c B is given in terms of ¬(A ∧ ¬B).

That is, although A →c ⊥ ≡ A →i ⊥ ≡ ¬A, applications of the “intuitionistic
negation” A→i ⊥ are more permissive than ¬A and A→c ⊥ in LEci. These matters
will disappear in the multiple-conclusion systems presented next, since they carry
better, in the syntax, the semantical interpretation of the logic.

5 Towards locality

While the simplicity of the sequent framework makes it an ideal tool for proving meta-
logical properties, sequent calculus is often not expressive enough for constructing cut-
free calculi for many logics of interest (see e.g. Avron (1996)). As a result, many new
formalisms have been proposed over the last 30 years, including hypersequent calculi
(Avron (1991)), nested calculi (Brünnler (2009); Poggiolesi (2009)) and labelled
calculi (Gabbay (1996); Viganò (2000)). All such formalisms expand the sequent
framework with some notion of locality: an inference rule is called local when it does
not place any restriction on side formulae in the context. Although LEci is cut-free, the
classical rules are not local, since they impose restrictions on the context. Moreover,
the sequent rules do not, at a first sight, reflect the semantical interpretation of the
connectives. In this section, we will propose a (local) nested system for the Ecumenical
logic based on the semantical description given in the last section, allowing also the
proposal of a multiple-conclusion Ecumenical system.

Nested systems are extensions of the sequent framework where a single sequent is
replaced with a tree of sequents. Sequents in nested sequents have the form Γ ⇒ ∆,
where Γ, ∆ are multi-sets of formulae.

Definition 7 A nested sequent is defined inductively as follows:

– if Γ ⇒ ∆ is a sequent, then it is a nested sequent;
– if Γ ⇒ ∆ is a sequent and G1, . . . ,Gk are nested sequents, then Γ ⇒ ∆, [G1], . . . , [Gk]

is a nested sequent.

A nested system (NS) consists of a set of inference rules acting on nested sequents.

For readability, we will denote by Γ, ∆ sequent contexts and by Λ sets of nestings. In
this way, every nested sequent has the shape Γ ⇒ ∆, Λ where elements of Λ have the
shape [Γ′ ⇒ ∆′, Λ′] and so on. We will denote by Υ an arbitrary nested sequent.

Rules in nested systems will be represented using holed contexts.

Definition 8 A nested-holed context is a nested sequent that contains a hole of the
form { } in place of nestings. We represent such a context as S { }. Given a holed
context and a nested sequent Υ, we write S {Υ} to stand for the nested sequent where
the hole { } has been replaced by [Υ], assuming that the hole is removed if Υ is empty
and if S is empty then S {Υ} = Υ.
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S {Γ, A→i B⇒ A} S {Γ, B⇒ ∆, Λ}

S {Γ, A→i B⇒ ∆, Λ}
→i L

S {Γ ⇒ ∆, Λ, [A⇒ B]}
S {Γ ⇒ A→i B, ∆, Λ}

→i R

S {Γ, A→c B⇒ A} S {Γ, B⇒ ·}
S {Γ, A→c B⇒ ∆, Λ}

→c L
S {Γ ⇒ ∆, Λ, [A,¬B⇒ ·]}
S {Γ ⇒ A→c B, ∆, Λ}

→c R

S {Γ, A, B⇒ ∆, Λ}

S {Γ, A ∧ B⇒ ∆, Λ}
∧L

S {Γ ⇒ A, ∆, Λ} S {Γ ⇒ B, ∆, Λ}
S {Γ ⇒ A ∧ B, ∆, Λ}

∧R

S {Γ,¬A⇒ A}
S {Γ,¬A⇒ ∆, Λ}

¬L
S {Γ ⇒ ∆, Λ, [A⇒ ·]}
S {Γ ⇒ ¬A, ∆, Λ}

¬R

S {Γ, A⇒ ∆, Λ} S {Γ, B⇒ ∆, Λ}

S {Γ, A ∨i B⇒, ∆, Λ}
∨iL

S {Γ ⇒ A1, A2, ∆, Λ}

S {Γ ⇒ A1 ∨i A2, ∆, Λ}
∨iR

S {Γ, A⇒ ·} S {Γ, B⇒ ·}
S {Γ, A ∨c B⇒ ∆, Λ}

∨cL
S {Γ ⇒ ∆, Λ, [¬A,¬B⇒ ·]}
S {Γ ⇒ A ∨c B, ∆, Λ}

∨cR

S {Γ, A[a/x]⇒ ·}
S {Γ,∃c x.A⇒ ∆, Λ}

∃cL
S {Γ ⇒ ∆, Λ, [∀x.¬A⇒ ·]}
S {Γ ⇒ ∃c x.A, ∆, Λ}

∃cR

S {Γ, A[a/x]⇒ ∆, Λ}

S {Γ,∃i x.A⇒ ∆, Λ}
∃iL

S {Γ ⇒ ∃i x.A, A[a/x], ∆, Λ}
S {Γ ⇒ ∃i x.A, ∆, Λ}

∃iR

S {Γ,∀x.A, A[a/x]⇒ ∆, Λ}

S {Γ,∀x.A⇒ ∆, Λ}
∀L

S {Γ ⇒ ∆, Λ, [· ⇒ A[a/x]]}
S {Γ ⇒ ∀x.A, ∆, Λ}

∀R

S
{
Γ, Pn

i ⇒ ·
}

S
{
Γ, Pn

c ⇒ ∆, Λ
} Lc

S
{
Γ ⇒ ∆, Λ,

[
¬Pn

i ⇒ ·
]}

S
{
Γ ⇒ Pn

c , ∆, Λ
} Rc

S {Γ,⊥ ⇒ ∆, Λ}
⊥L

S {Γ ⇒ ∆, Λ}

S {Γ ⇒ ∆, Λ, ∆′, Λ′}
W

S
{
Γ, A⇒ ∆, Λ,

[
Γ′, A⇒ ∆′, Λ′

]}
S

{
Γ, A⇒ ∆, Λ,

[
Γ′ ⇒ ∆′, Λ′

]} lift
S {Γ, A⇒ A, ∆, Λ}

init

Fig. 4 Ecumenical nested sequent system NSLEci. In rules ∀R, ∃cL and ∃iL, the parameter a is fresh, while
in ∃iR,∀L, a does not occur in Λ.

For example, (Γ ⇒ ∆, { }){Γ′ ⇒ ∆′} = Γ ⇒ ∆, [Γ′ ⇒ ∆′] while { }{Γ′ ⇒ ∆′} =

Γ′ ⇒ ∆′. The idea of holes and nestings is that rules can be applied deep inside a
nested structure. The calculus NSLEci is depicted in Fig 4.

In face of Fact 1, following Lellmann (2015) we can give an Ecumenical interpre-
tation for nestings in terms of the intuitionistic implication.

Definition 9 The Ecumenical formula translation ιE for nested sequents is given by

– if Γ ⇒ ∆ is a sequent, then ιE(Γ ⇒ ∆) =
∧
Γ →i

∨
i ∆.

– ιE (Γ ⇒ ∆, [Γ1 ⇒ ∆1, Λ1] , . . . , [Γn ⇒ ∆n, Λn]) =
∧
Γ →i (

∨
i ∆∨iιE (Γ1 ⇒ ∆1, Λ1)∨i

. . . ∨i ιE (Γn ⇒ ∆n, Λn).

The following semantical interpretation of nestings as possible worlds in intuition-
istic logic was given in Fitting (2014):

“A sequent Γ ⇒ ∆ is true at a state [of a Kripke model] provided that, if all
members of Γ are forced there, so is some member of ∆. And let us say a
boxed sequent, [S ], is true at a state provided the sequent S is true at that state
and at every state accessible from it.”
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In our setting, the nested sequent · ⇒ [Γ ⇒ ∆, Λ] has the following Ecumenical
interpretation

> →i ιE(Γ ⇒ ∆, Λ)

where > = ⊥ →i ⊥, which is valid in a world w iff ∀v ≥ w.v  ιE(Γ ⇒ ∆, Λ). That
is, the nested sequent Γ ⇒ ∆, Λ is evaluated in a world v such that v ≥ w. This
gives a 1-1 correspondence between nestings and worlds in an Ecumenical Kripke
frame. Such a correspondence justifies the so-called indexed nestings (Fitting (2014)),
where nestings carry over the semantical information (in this case, we could write
[Γ ⇒ ∆, Λ]v). Moreover, by monotonicity of Kripke frames, if a formula is valid in
v, it will be valid in every world u such that u ≥ v, which is the same semantical
interpretation for nestings given by Fitting.

The following fact holds for NSLEci.

Fact 2 When classical left rules are applied, the right context is erased (bottom-up).

Fact 3 Universal quantifier and intuitionistic implication (hence also negation) are
the sole connectives responsible for creating deeper nestings.

Fact 2 simply corroborates the evidence that, in the double negation setting, classical
information must be confined to the antecedent of a sequent; moreover this implies that
classical formulae should be evaluated in the world corresponding to the nesting they
are in, which carries all and only the classical truth information. All further (hence
intuitionistic) semantic information should be erased. This is a perfect reading of the
semantics in the classical setting.

Fact 3, on the other hand, reflects the “for all” statement in the semantical de-
scription given in the last section. Observe that classical connectives are semantically
described using intuitionistic implication (via negation), hence right rules on these
connectives also create fresh nestings.

Using the Ecumenical interpretation of nestings, it is straightforward to prove
soundness of NSLEci with respect to the Ecumenical Kripke semantics given in last
section.

Theorem 4 The rules of NSLEci preserve validity in Ecumenical Kripke frames with
respect to the formula interpretation ιE.

Proof The proof is a straightforward adaptation of the one presented in Lellmann
(2015): for every rule in NSLEci, we construct a world falsifying the interpretation of a
premise from a world falsifying the interpretation of the conclusion. We will illustrate
this by taking as an example the ¬L rule. By an abuse of notation, we denote by ιE(Λ)
the interpretation ιE(· ⇒ [G1] , . . . , [Gk]), where Λ = [G1] , . . . , [Gk].

Suppose that the interpretation∧
Γ1 →i

∨
i ∆1

∨
i ιE(Λ1) ∨i (. . . (

∧
Γn ∧ (¬A)→i

∨
i ∆n ∨i ιE(Λn)) . . .)

of the conclusion of rule ¬L does not hold in world w in an Ecumenical Kripke
frame. Then there are worlds w1, . . . ,wn such that w ≤ w1 ≤ . . . ≤ wn with w j E Γ j,
w j 1E

∨
i ∆ j, w j 1E

∨
i ιE(Λ j) and wn  ¬A. Hence, by definition, wn 1 ¬A and thus

the formula interpretation of the premise is falsified in wn.
For the quantifier rules we use monotonicity of domains. For example, if the

interpretation
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Γ, A→i B⇒ A Γ, B⇒ ∆

Γ, A→i B⇒ ∆
→i L

Γ, A⇒ B
Γ ⇒ A→i B, ∆

→i R

Γ, A→c B⇒ A Γ, B⇒ ·
Γ, A→c B⇒ ∆

→c L
Γ, A,¬B⇒ ·

Γ ⇒ A→c B, ∆
→c R

Γ, A, B⇒ ∆

Γ, A ∧ B⇒ ∆
∧L

Γ ⇒ A, ∆ Γ ⇒ B, ∆
Γ ⇒ A ∧ B, ∆

∧R

Γ,¬A⇒ A
Γ,¬A⇒ ∆

¬L
Γ, A⇒ ·
Γ ⇒ ¬A, ∆

¬R

Γ, A⇒ ∆ Γ, B⇒ ∆

Γ, A ∨i B⇒, ∆
∨iL

Γ ⇒ A1, A2, ∆

Γ ⇒ A1 ∨i A2, ∆
∨iR

Γ, A⇒ · Γ, B⇒ ·
Γ, A ∨c B⇒ ∆

∨cL
Γ,¬A,¬B⇒ ·
Γ ⇒ A ∨c B, ∆

∨cR

Γ, A[a/x]⇒ ·
Γ,∃c x.A⇒ ∆

∃cL
Γ,∀x.¬A⇒ ·
Γ ⇒ ∃c x.A, ∆

∃cR

Γ, A[a/x]⇒ ∆

Γ,∃i x.A⇒ ∆
∃iL

Γ ⇒ ∃i x.A, A[a/x], ∆
Γ ⇒ ∃i x.A, ∆

∃iR

Γ,∀x.A, A[a/x]⇒ ∆

Γ,∀x.A⇒ ∆
∀L

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A, ∆

∀R

Γ, Pn
i ⇒ ·

Γ, Pn
c ⇒ ∆

Lc
Γ,¬Pn

i ⇒ ·

Γ ⇒ Pn
c , ∆

Rc

Γ,⊥ ⇒ ∆
⊥L

Γ ⇒ ∆

Γ ⇒ ∆, ∆′
W

Γ, A⇒ A, ∆ init

Fig. 5 Ecumenical multi-conclusion system mLEci. In rules ∀R, ∃cL and ∃iL, the parameter a is fresh.

∧
Γ1 →i

∨
∆1

∨
i ιE(Λ1) ∨i (. . . (

∧
Γn ∧ (∀x.A)→i

∨
i ∆n ∨i ιE(Λn)) . . .)

of the conclusion of ∀L does not hold at world w in an Ecumenical Kripke frame,
there are worlds w1, . . . ,wn such that w ≤ w1 ≤ . . . ≤ wn with w j E Γ j, w j 1E

∨
i ∆ j,

w j 1E
∨

i ιE(Λ j) and wn  ∀x.A. If a ∈ D(w j) for some 1 ≤ j ≤ n then a ∈ D(wn) and
wn E A[a/x] and the interpretation of the premise of ∀L is falsified at w. If a < D(w j)
for all 1 ≤ j < n, we augment D(wn) with a and the result follows the same way. ut

Instead of proving the completeness result directly, we will do it via a multiple-
conclusion Ecumenical system. This detour has a sensible explanation: nested systems
are extensions of the sequent approach that are closely related to semantics, as we
just saw. On the other hand, it is not clear how to get any semantic information out of
the (single-conclusion) sequent system presented in Section 3. Multiple conclusion
sequent calculi often make a bridge between sequent and nested sequent systems.

The multiple-conclusion Ecumenical sequent system mLEci is actually built from
LEci′ by introducing the information given by Facts 2 and 3. More specifically, every
time the “accessible worlds” information should be removed (a new world is created),
the right context information is erased (frozen) in the premises. The rules for the
multiple-conclusion version of LEci′ are given in Fig. 5. Observe that the comma
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in the succedent is intuitionistic, as in the multiple conclusion intuitionistic sequent
system mLJ (Maehara (1954)).

The following completeness result connects nested and multi-conclusion sequent
settings.

Theorem 5 If Γ ⇒ ∆ is provable in mLEci, then S {Γ ⇒ ∆} is provable in NSLEci.

Proof It is easy to see that any derivation in mLEci can be converted, bottom-up, into
a derivation in NSLEci. Illustrating the rules for implication right

Γ, A,¬B⇒ ⊥
Γ ⇒ A→c B, ∆

→c R
{

S {Γ ⇒ ∆, [Γ, A,¬B⇒ ·]}
S {Γ ⇒ ∆, [A,¬B⇒ ·]} lift

S {Γ ⇒ A→c B, ∆}
→i R

Regarding the quantifier rules, we have to make sure that the variable conditions hold.
For ∀R, the conversion is the following

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A, ∆ ∀R

{

S {Γ ⇒ ∆, [Γ ⇒ A[a/x]]}
S {Γ ⇒ ∆, [⇒ A[a/x]]} lift

S {Γ ⇒ ∀x.A, ∆} ∀R

Since the parameter a is fresh in the left derivation, we can assume that it does not
occur in S, and the variable condition for the nested ∀R rule is satisfied. ut

We close this section by showing that mLEci is equivalent to LEci.

Theorem 6 `mLEci Γ ⇒ ∆ iff `LEci Γ ⇒
∨

i ∆.

Proof The completeness direction is trivial, since all rules in LEci are (restricted
versions) of rules in mLEci and the ∨iR rule is invertible in mLEci.

Soundness is proven by easy induction of the derivation π of Γ ⇒ ∆ in mLEci. For
example, if ∆ = A→c B, ∆′ and the last rule applied in π is

Γ, A⇒ B
Γ ⇒ A→i B, ∆′

→c R

by inductive hypothesis Γ, A⇒ B is derivable in LEci. Hence

Γ, A⇒ B
Γ ⇒ A→i B

→i

Γ ⇒ (A→i B) ∨i (
∨

i ∆
′)
∨iR

ut

Wrapping up: we have shown

NSLEci mLEci

Kripke LEci

Th.4

Th.5

Th.6

Th.3

Hence all Ecumenical systems (single and multi conclusion sequent; and nested
systems) are sound and complete with respect to the Ecumenical Kripke semantics.
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Γ, A→i B⇒ A Γ, B⇒ ∆

Γ, A→i B⇒ ∆
→i L

Γ, A⇒ B
Γ ⇒ A→i B, ∆

→i R
Γ, A, B⇒ ∆

Γ, A ∧ B⇒ ∆
∧L

Γ ⇒ A, ∆ Γ ⇒ B, ∆
Γ ⇒ A ∧ B, ∆

∧R
Γ,¬A⇒ A
Γ,¬A⇒ ∆

¬L
Γ, A⇒ ·
Γ ⇒ ¬A, ∆

¬R

Γ, A⇒ ∆ Γ, B⇒ ∆

Γ, A ∨i B⇒ ∆
∨iL

Γ ⇒ A1, A2, ∆

Γ ⇒ A1 ∨i A2, ∆
∨iR

Γ, A[a/x]⇒ ∆

Γ,∃i x.A⇒ ∆
∃iL

Γ ⇒ ∃i x.A, A[a/x], ∆
Γ ⇒ ∃i x.A, ∆

∃iR
Γ,∀x.A, A[a/x]⇒ ∆

Γ,∀x.A⇒ ∆
∀L

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A, ∆

∀R

Γ,⊥ ⇒ ∆
⊥L

Γ, A⇒ A, ∆ init

Fig. 6 mLEci’s intuitionistic fragment, or system mLJ. In rules ∀R and ∃iL, the parameter a is fresh.

6 Classical and intuitionistic fragments

Since we already saw that the entailment in Ecumenical systems is actually intu-
itionistic, an interesting question would be what happens if we get from any of the
Ecumenical systems presented here only the pure classical or intuitionistic fragments.

In the intuitionistic case the answer is trivial: restricting any calculus presented
here entails the well known calculi for intuitionistic logic. As an example, we present
in Fig. 6 the rules for pure intuitionistic mLEci, which collapses to mLJ (Maehara
(1954)). The only observation is that, in this system, weakening is admissible, so it is
not shown as part of the rules.

The classical fragment, however, is a little more interesting, as it takes some work
for it to be understood.

First of all, the following theorem comes straightforwardly, using induction.

Theorem 7 Γ ⇒ ∆ is provable in the classical fragment of mLEci iff either Γ ⇒ · is
provable or there is A ∈ ∆ such that Γ ⇒ A is provable in such a fragment.

This means that the single and multiple conclusion calculi collapse in the classical
case, what is not at all surprising since the comma in the succedent of sequents in
mLEci correspond to the intuitionistic disjunction ∨i.

The system LEc, the classical fragment of LEci, is shown in Fig. 7, where classical
and intuitionistic interpretations for atomic predicates are collapsed. Note that weak-
ening is admissible in LEc and all the rules are invertible (thanks to Theorem 2). LEc
impersonates a goal directed proof search (Miller et al. (1991)), where right formulae
are decomposed totally until either an axiom is applied and the proof terminates, or
the succedent of the premises are bottom, in which case left rules are applied.

7 Conclusion and future research directions

In this work we have analysed the Ecumenical notion of entailment proposed by
Prawitz (Prawitz (2015)). To do this analysis we moved to the sequent calculus
formulation of the system, where proof-theoretical results showed that the Ecumenical
entailment is, in general, intuitionistic, but it turns classical in the presence of classical
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Γ ⇒ A Γ, B⇒ ⊥
Γ, A→c B⇒ ⊥

→c L
Γ, A,¬B⇒ ⊥
Γ ⇒ A→c B

→c R
Γ, A, B⇒ ⊥
Γ, A ∧ B⇒ ⊥ ∧L

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B ∧R

Γ ⇒ A
Γ,¬A⇒ ⊥ ¬L

Γ, A⇒ ⊥
Γ ⇒ ¬A ¬R

Γ, A⇒ ⊥ Γ, B⇒ ⊥
Γ, A ∨c B⇒ ⊥

∨cL
Γ,¬A,¬B⇒ ⊥
Γ ⇒ A ∨c B

∨cR
Γ, A[a/x]⇒ ⊥
Γ,∃c x.A⇒ ⊥

∃cL

Γ,∀x.¬A⇒ ⊥
Γ ⇒ ∃c x.A

∃cR
Γ, A[a/x]⇒ ⊥
Γ,∀x.A⇒ ⊥ ∀L

Γ ⇒ A[a/x]
Γ ⇒ ∀x.A ∀R

Γ,⊥ ⇒ ⊥
⊥L

Γ,¬p⇒ ⊥
Γ ⇒ p

Rc
Γ, A⇒ A init

Fig. 7 Sequent system LEc: the classical fragment of LEci. In rules ∀R and ∃cL, the parameter a is fresh.

succedents. We then produced a nested sequent version of the original sequent system
and showed all of them sound and complete with respect to (a small extension of)
the Ecumenical Kripke semantics of Pereira and Rodriguez. Finally, we analysed
fragments of the systems presented, coming to well known intuitionistic calculi and
a sequent system for classical logic amenable to a treatment by goal directed proof
search.

Since the idea of using different signs for the different meanings attached to
intuitionistic and classical operators is not new, some comparison should be done with
other systems in the literature that combine intuitionistic and classical logics.

Regarding proof systems, there is the seminal work of Girard in (Girard (1993)),
and the more recent work of Liang and Miller (Liang and Miller (2011)). Their work
is based on polarities and focusing, using translations into linear logic. Since the
explicit use of double-negation has the effect of throttling focused proofs, the systems
we obtain is essentially different from fragments of Girard’s LU or Liang-Miller’s
LKF. Hence it seems that there is little or no intersection of the systems presented
here and the ones inspired by linear logic. However, our Ecumenical systems seem
to be amenable for a definition of focusing and normal derivations in the same lines
as in Boudard and Hermant (2013). This is certainly a future work direction worth
pursuing.

Prawitz’ main motivation for the introduction of the Ecumenical system was philo-
sophical: to provide a logical framework that would make possible an inferentialist
semantics for the classical logical constants. The usual Gentzen’s introduction rules
for the logical constants can be taken as constitutive of their meanings from the intu-
itionistic point of view. On the other hand, classical logic does not seem to allow for
the same semantical approach. As Prawitz puts it,

“no canonical proof of an arbitrarily chosen instance of the law of the excluded
middle is known, nor any reduction that applied to a proof terminating with
an application of the classical form of reductio ad absurdum gives a canonical
proof of the conclusion.”

According to Prawitz, this is no reason to give up the inferentialist approach to classical
logic: we just have to find the adequate introduction rules for the classical connectives.
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Peter Krauss (Krauss (1992)) and Gilles Dowek (Dowek (2016)) explored the same
Ecumenical ideas. Their main motivation was mathematical: to explore the possibility
of hybrid readings of axioms and proofs in mathematical theories, i.e., the occurrences
of classical and intutionistic operators in mathematical axioms and proofs, in order
to propose a new and original method of constructivisation of classical mathematics.
Krauss applied these ideas in basic algebraic number theory and Dowek considered
the example of an Ecumenical proof of a simple theorem in basic set theory.

Our motivation follows Prawitz’ suggestion: we would like to see whether we can
provide an inferentialist approach to classical logic. Because, like Krauss and Dowek,
we want to extend the reach of constructive proof-theory to classical and/or hybrid
systems, where some operators and some formulas are classic, others intuitionistic.
The criteria for success are mixed, some mathematical (the elegance of the basic
proofs counts), others more philosophical (the purer the system, the better). In any
case, this is a long-reaching programme, for which we have given the first steps.
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