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1 Introduction

Blass’ seminal paper [2] makes a surprising connection between Dialectica categories [16], Vojtáš’
methods to prove inequalities between cardinal characteristics of the continuum [24] and the com-
plexity theoretical notions of problems and reductions developed in [9]. Blass did not mention
Kolmogorov’s [10] very abstract notion of problem, which is not related to specific complexity
issues. Kolmogorov did investigate a notion of abstract problem, producing an alternative intu-
itive semantics for Propositional Intuitionistic Logic, part of the celebrated BHK interpretation
of Intuitionistic Logic.

Kolmogorov’s problems were cited as an inspiration by Veloso when he developed his own
theory of abstract problems in the Eighties [22], but the two frameworks were not formally
connected. This note recalls Veloso’s ‘Teoria de Problemas’ (Theory of Problems) and shows how
it can be related to the Dialectica construction [15], via Kolmogorov’s concepts. To establish
this relationship, we use the modification of the Dialectica construction considered by the second
author [20, 19] for other set-theoretical purposes. This modification corresponds to a condition
of non-triviality of the collections of problems or solutions, first suggested by [13].

The categorical connection between Dialectica models, Kolmogorov’s problems, Veloso’s prob-
lems and Blass’ problems shows that the use of categories really allows us to connect extremely
different areas of mathematics, using simple methods. In the case of this paper, it also allow
us to determine where exactly the foundational choices of axioms are important. We show that
while Blass and Kolmogorov’s notions of problem can be investigated using the set-theoretical
framework of ZF, Veloso’s problems commit us to a stronger set-theory, as discussed in the fol-
lowing sections. Whether this requirement of stronger foundations is a bug or a feature depends,
perhaps, on personal taste and conviction. From our part we are happy to note that, like many
other questions in Mathematics, as soon as one investigates them a little, the notion of ‘problem’
points out to grand challenges in the foundations of Mathematical Logic, to wit whether one
wants to accept or not the Axiom of Choice within their chosen framework.
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2 Kolmogorov Problems

Blass [2] noticed that de Paiva’s Dialectica construction GC [15], when the base category C is
the category Sets, is the dual of Vojtáš’s category GT of generalized Galois-Tukey connections.
Since the Dialectica construction has been generalized in many different directions, instead of
writing GSets we will write Dial2(Sets) for this category, to make explicit the object 2 (the
object of truth-values) where our relations map into, as well as the category C that is Sets,
where objects ‘live’. We recall the definition of the category below.

Definition 2.1 (Dialectica category [15]). The category Dial2(Sets) has as objects triples of the
form A = (U,X, α), where U and X are sets and α ⊆ U ×X is a set-theoretical relation, which
can be written, equivalently, as α : U ×X → 2. If A = (U,X, α) and B = (V, Y, β) are objects
of Dial2(Sets), a morphism from A to B is a pair of functions in Sets, (f, F ), f : U → V ,
F : Y → X such that

For all u ∈ U and y ∈ Y , uαF (y) implies f(u)βy.

Blass also noticed that the opposite, dual Dialectica Category Dial2(Sets)op can be taken to
intuitively mean that objects represent problems and morphisms stand for reductions between
problems. Thus a triple P = (I, S, σ) of Dial2(Sets)op, under this interpretation, represents a
problem, whose instances are elements of I, the set of possible solutions is given by S and the
relation σ can be read as “is solved by”, that is, if z is an instance of the problem P and s is
a possible solution then zσs states that “s solves z”. Blass associates these problems with a
concept of many-one reduction of search problems in complexity theory, a very restricted kind
of problem, for which he refers to [9, 23].

Veloso’s theory of problems ([22]), following Pólya, suggests that in order to understand a
problem one should consider the following initial questions:

1. What is the unknown?

2. What are the data?

3. What is the condition?

These questions correspond directly to the elements of the triples of information which charac-
terize a problem, which will be referred to, in this work, as a Kolgomorov problem. They also
correspond precisely to Blass’ interpretation above.

Definition 2.2 (Kolgomorov problems). A Kolgomorov problem is a triple P = (I, S, σ),
where I and S are sets and σ ⊆ I × S is a set theoretical relation. We say that:

• I is the set of instances of the problem P ;

• S is the set of possible solutions for the instances I; and

• σ is the problem condition, i.e. the relation σ holds between z and s, in symbols z σ s
if the solution s satisfies the problem condition σ for the instance z, or, more briefly, “s
σ-solves z”.

Kolmogorov’s paper [10] has two parts. About the first section, which introduces his problems,
he says that “If the intuitionistic cognitive presuppositions are not accepted then one should take
into account only the first section”. In this section he introduces problems via mathematical
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examples, for instance “Find any four integers, x, y, z and n such that xn + yn = zn, for n > 2”.
(Note that Kolmogorov states explicitly, in page 152, that “We never assume a problem to be
solvable”.)

We can identify the objects of the category Dial2(Sets) with Kolgomorov problems. What
would the morphisms represent in this case? To answer this, we consider the morphisms of the
opposite of the Dialectica category, Dial2(Sets)op. In Dial2(Sets)op, a morphism from an object
P ′ = (I ′, S′, σ′) to an object P = (I, S, σ) is a pair of functions (f, F ), where f : I → I ′ and
F : S′ → S are such that the following condition holds

(∀z ∈ I) (∀t ∈ S′) [f(z)σ′ t −→ z σ F (t)].

So for all instances of problems z of P and all solutions of problems t of P ′, if the instance of
problem f(z) has σ′-solution t then the instance z has σ-solution F (t).

If we regard P and P ′ as Kolgomorov problems, the existence of a morphism from P ′ to P
ensures that there is a reduction of the problem P to the problem P ′ – because the act of solving
an instance of P may be reduced to the act of solving an instance of P ′. More precisely, if one
wants to solve a particular instance z of the Kolgomorov problem P , it suffices to find a solution
t for the instance f(z) of P ′ – since F (t) will provide a solution for the initial instance z of P .

Kolmogorov discusses a few number-theoretical and geometrical problems, as well as abstract,
logical rules ones. In what follows, we present a number of examples from daily mathematical
practice to show how they are coded as Kolgomorov problems. We also show reductions between
those problems which can be seen as morphisms of Dial2(Sets)op. As a piece of notation, if X is
a set and n ∈ N then [X]n denotes the family of all subsets of X which have precisely n elements
and [X]6n means

⋃
m6n

[X]m.

Example 2.3. Analytical geometry is entirely based on the reduction of geometrical problems to
equation solving problems.

We present some practical examples to explain what we mean by the statement above.
Let π be any plane of the 3-dimensional Euclidean space R3 and let F : R2 → π be a coordinate

system as usual (i.e., for every pair (u, v) of real numbers we associate the point P = F (u, v) of
the plane which has coordinates (u, v) – that is, P = P(u,v)). Every line l of the plane π is then
represented by an equation of the form ax + by = c, where a and b are real numbers such that
a 6= 0 or b 6= 0 and c ∈ {0, 1}. Let E be the family of all equations of the described canonical
form and let L denotes the family of all lines of the plane π. The decision problem of “whether
a given point lies on a given line” is (L, π,3), and the problem of “whether a given pair of real
numbers satisfy a given equation” is (E,R2, ζ), on which an equation ax + by = c is ζ-related
to a pair (u, v) of real numbers if au + bv = c. Then we can reduce the geometrical problem
(L, π,3) to the algebraic problem (E,R2, ζ) using the morphism (f, F ), where f : L → E is
defined by putting f(l) = eq(l) (where eq(l) is the canonical equation which represents l) and
F : R2 → π is the coordinate system. Indeed, if (u, v) satisfies the equation of a line l we know
that the corresponding point P(u,v) lies in l.

A slight variation of what we have just done reduces the problem of finding the intersection
point of two distinct lines to the problem of solving a linear system with two equations over
two variables. The geometrical problem of finding the intersection point of two distinct lines is
([L]2, π, ξ), where {l1, l2} ξ P means that P ∈ l1 ∩ l2 for any distinct lines l1, l2 of π and for every
point P in π. The algebraic problem of finding the solution for a linear system with two equations
over two variables is ([E]2,R2, λ), where the relation λ in {a1x+ b1y = c1, a2x+ b2y = c2}λ(u, v)
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is the conjunction of “a1x+ b1y = c1”ζ(u, v) and “a2x+ b2y = c2”ζ(u, v). The morphism which
gives the reduction is (g, F ), where g : [L]2 → [E]2 is given by g({l1, l2}) = {f(l1), f(l2)} =
{eq(l1), eq(l2)} for all distinct lines l1, l2 of π and F : R2 → π is still the coordinate system.
Now, if l1 and l2 are distinct lines and (u, v) is a solution of the system {eq(l1), eq(l2)} then the
point P(u,v) lies in the intersection of the lines l1 and l2.

Example 2.4. The problem of finding vectors in the intersection of the kernels of a finite family
of linear functionals over Rn reduces to the problem of finding the solutions of a homogeneous
system of linear equations.

Let n > 2 and {e1, e2, . . . , en} denote the canonical basis of the n-dimensional Euclidean space
Rn, regarded as a vector space over R. A linear functional over Rn is a linear transformation
from Rn into R. Let (Rn)∗ (the dual of Rn) denote the family of all linear functionals over Rn.
It is well-known that the dimension of the dual space is also n, and that {x1,x2, . . . ,xn} is a
basis of the dual space – where, for 1 6 i 6 n, xi : Rn → R is the linear functional which satisfies
xi(ej) = δij (where δij = 1 if i = j and it is zero otherwise) for 1 6 j 6 n and is then extended
to all linear functionals by linearity.

Let E denote the family of all linear equations of the form a1x1+a2x2+ . . .+anxn = 0, where
a1, . . . , an are real numbers. A linear functional T in the dual space of Rn may be written, in a

unique way, in the form T =
n∑

i=1

aixi. Thus we may define a translation function g : (Rn)∗ → E

in the obvious way, i.e. by putting

g(T ) = “a1x1 + a2x2 + . . .+ anxn = 0”

if T =
n∑

i=1

aixi.

The problem of finding vectors in the intersection of the kernel of finite families of linear func-
tionals is ([(Rn)∗]6n,Rn, α), where Hα (c1, c2, . . . , cn) means that (c1, c2, . . . , cn) ∈

⋂
h∈H

Ker(h)

for any finite family H of m linear functionals with m 6 n and any n-tuple (c1, c2, . . . , cn) ∈ Rn

(recall that the dimension of the dual space is n as well, so we may only consider finite fam-
ilies with no more than n linear functionals). The problem of solving a homogeneous system
of no more than n linear equations is ([E ]6n, β,Rn), where G β (c1, c2, . . . , cn) means that, for
any (c1, c2, . . . , c2) ∈ Rn and any G ∈ [E]m with m 6 n, (c1, c2, . . . , c2) solves each one of
the m linear equations of the finite family G. A morphism which codes the usual and easily
verifiable procedure of reducing the first problem to the second is now given by (f, Id), where
f : [(Rn)∗]6n → [E ]6n is given by f(H) = {g(h) : h ∈ H} for any finite family H of no more than
n linear functionals and Id is the identity function from the set Rn into the vector space Rn –
i.e., we have reduced a problem stated in the context of the linear structure of Rn and its dual
to a more naive, pedestrian problem of finding solutions of a homogeneous system of equations.

Veloso developed further notions of viable problems, links between problems (and reduction
links between problems) in his theory of mathematical problems [22]. However, as Veloso himself
was aware of (see further discussion in the final section), these definitions make essential use of
the Axiom of Choice ([11],[12]), and this use will be detailedly discussed in the next section.
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3 Veloso Problems and the Axiom of Choice

In our previous work [20] we described a modification of the category Dial2(Sets)op, which Blass
calls the category PV in [2]. Blass, describing the category PV, explains that it has as objects
problems, together with their instances and respective solutions. Moreover, morphisms of the
category PV identify reductions of classes of (complexity) problems to others. The modification
of the category in [20], following the work of [13], insists on some conditions of non-triviality of
the objects. These conditions can be paraphrased as ‘there are no problems without a solution’
and ‘there are no solutions that solve all problems at once’. There are also some constraints on
the cardinality of the sets of instances and solutions of PV; all constituent sets of objects of PV
are bounded above by the cardinality of the continuum (which is c = 2ℵ0 = |R| = |P(N)|).

The mentioned non-triviality conditions are not found in the original Dialectica categori-
cal construction ([15],[16]), where trivial objects are actually required to provide truth-values
(or units for the categorical operators) associated to the logical connectives of Girard’s Linear
Logic [6]. The non-triviality conditions are also not found in Kolmogorov’s work. He describes
meaningless problems as the ones that do not have a solution.

The non-triviality conditions will characterize, exactly, a class of problems we refer to as
Veloso problems. We note, however, that there are no upper bounds for the cardinality of the
sets of instances and solutions of the problems originally discussed by Veloso.

We first formally present the category PV, as well as stratified versions of it which were
introduced in [19]. The following definition should be considered within ZFC, since we refer to
well-ordered cardinals in its first clause.

Definition 3.1 (Category PV [20]). The category PV is the subcategory of Dial2(Sets)op whose
objects are the triples A = (U,X, α) satisfying the following three clauses, which will be referred
to as the MHD conditions (MHD stands for Moore, Hrušák and Džamonja [13]):

(1) The cardinalities of the (non-empty) constituent sets are bounded above by the cardinality
of the continuum – i.e. 0 < |U |, |X| 6 2ℵ0 .

(2) Every problem has a solution – i.e.

(∀u ∈ U)(∃x ∈ X)[uαx].

(3) There are no solutions that solve all the problems at once – i.e.

(∀x ∈ X)(∃u ∈ U)[¬ (uαx)].

The morphisms between objects of PV are the same morphisms of Dial2(Sets)op – that is, a
morphism from an object B = (V, Y, β) to an object A = (U,X, α) is a pair of functions (f, F ),
where f : U → V and F : Y → X are such that

(∀u ∈ U) (∀y ∈ Y ) [f(u)β y −→ uαF (y)].

Morphisms of PV induce the Galois-Tukey pre-order introduced by Vojtáš, which is de-
fined in the following way: if A = (U,X, α) and B = (V, Y, β) are objects of PV, then we
have

A 6GT B ⇐⇒ There is a morphism from B to A.
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The diagram below represents the situation where A 6GT B:

u U

f

��

α XF (y)

f(u) V β Y y

F

OO

Given an object A = (U,X, α) of PV, its dual object is given by A∗ = (X,U, α∗), where xα∗u
means that ¬ (uαx). One can easily check (via a contrapositive argument) that:

If A 6GT B, then B∗ 6GT A∗.

In [19] parametrized, stratified versions of PV were introduced – the PVX categories, for X
an infinite set. The main goal of the proposed stratification was to generalize features of PV to
sets of higher cardinalities, since the constituents of the objects of PV are bounded above by the
cardinality of the continuum (which is the cardinality of the power set of the naturals). Notice
that, indeed, in ZFC the categories PV and PVN coincide, and so the whole idea of the stratified
versions was to generalize PV (in a choiceless context) to any other other infinite set X. These
categories are introduced in the ZF setting, as their definitions use the notion of domination
(4) between sets instead of that of well-ordered cardinals (for a more detailed discussion on the
subtleties of comparing sizes in the absence of AC, we refer to Section 2 of [19]). Recall that a
set A is dominated by a set B, A 4 B, if there is an injective function from A into B.

Definition 3.2 (Categories PVX). Let X be an infinite set in ZF. Then PVX is the subcategory
of Dial2(Sets)op whose objects (U,X, α) are those which satisfy the following MHDX conditions
(since they are a restricted form of the MHD conditions):

(1) U , V are non-empty sets and U, V 4 P(X), that is, sets U, V are dominated by P(X).

(2) (∀u ∈ U)(∃x ∈ X)[uαx]

(3) (∀x ∈ X)(∃u ∈ U)[¬ (uαx)]

The morphisms between objects of PVX are the same morphisms of Dial2(Sets)op.

We also define, in the expected way, a Galois-Tukey ordering 6GT on the objects of PVX .
The categories PVX are used in [19] to provide, after a quantification over all infinite sets,

equivalences of the Axiom of Choice AC. The following equivalences are proved in [19]:

Theorem 3.3 (da Silva [19]). The Axiom of Choice is equivalent to the following statements:

(*) “For every infinite set X, (P(X),P(X),=) is a maximum element in the Galois-Tukey
ordering 6GT on PVX .”

and

(**) “For every infinite set X, (P(X),P(X), 6=) is a minimum element in the Galois-Tukey
ordering 6GT on PVX .”
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This theorem shows that stratifying objects and features of the Dialectica construction using
the Galois-Tukey ordering is equivalent to accepting the Axiom of Choice. This may be a surprise
to mathematicians not used to the “thinking about foundational issues” exercise.

In this work we are interested in the investigation of general problems, which means that, in
particular, the sets of instances and solutions should have no upper bounds on their cardinalities.
To do so in a categorical setting, we provide the following definition, which should be considered
in the setting of ZF.

Definition 3.4 (Unbounded PV category). The category PVunb, the unbounded PV category,
is the the subcategory of Dial2(Sets)op whose objects (U,X, α) satisfy the MHD conditions (2)
and (3) but where the MHD condition (1) is relaxed to allow sets of arbitrary large cardinality.
Thus we require MHD conditions (2) and (3) together with

(1)’ U and X are non-empty sets

A triple (U,X, α) is an object of PVunb if it is an object of PVY for some infinite set Y .

The morphisms between objects of PVunb are the very same morphisms of Dial2(Sets)op.

The unbounded PV category captures, precisely Veloso problems – these are the Kolgomorov
problems which are viable and non-generic, as we define now.

Definition 3.5 (Veloso problem). Let P = (I, S, σ) be a Kolgomorov problem.
(i) P is said to be a viable problem if the domain of σ is the whole set I – or, equivalently,

if for every instance z of I there is some possible solution s in S that solves the problem, so that
the relation z σ s holds.

(ii) A possible solution s will be said to be a generic solution for P if it solves all of its
instances – that is, if for every instance z of I one has z σ s for this particular solution s.

(iii) The problem P is said to be non-generic if it has no generic solutions – equivalently,
for every possible solution s ∈ S there is some instance z ∈ I such that ¬(zσs).

(iv) P will be said to be a Veloso problem if it is viable and non-generic.

Notice that the fact that a problem P = (I, S, σ) is non-generic is equivalent to the viability
of the dual problem P ∗ = (S, I, σ∗), where s σ∗ z means ¬(zσs) for all z ∈ I and s ∈ S.

It should be clear that viability and non-genericity are conditions asking for non-triviality
of a given problem. For instance, it is well-known that the following statement is an Axiom of
Incidence, in Hilbert’s plane geometry:

(†) “For every line l, there are at least two points which lie in the line l and at least one point
which does not lie in the line l”

Together with the axiom “For every pair of distinct points there is only one line which passes
through those points”, the above statement (†) corresponds, precisely, to the viability and non-
genericity requirements for the problem of determining whether a given line contains a given pair
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of distinct points of the plane or (L,P,⊇), where

L = the set of all lines of the plane; and

P = the family of all pairs of two distinct points of the plane.

Notice also that non-genericity establishes a dimension for the preceding problem: if all points
were in the same line l we would not be studying the geometry of the plane, only the geometry
of a line.

The following example shows that certain mathematical notions are equivalent to the viability
of certain problems. Recall that a subset of a topological space is dense if its closure is equal to
the whole space. It is a textbook easy exercise to show that dense sets are precisely those which
intersect any non-empty open set. Thus, the following holds:

Example 3.6. Let (X, τ) be topological space and D be a proper subset of X. Then D is a dense
subspace of X if, and only if, the Kolgomorov problem (τ \ {∅}, D,3) is viable.

Alternatively, D is a dense set if, and only if, for every non-empty open set U of X the
problem ({U}, D,3) is viable. This observation is relevant in the following example, which is,
accordingly to Veloso ([22], page 24), a problem to prove in Pólya’s terminology – in contrast to
the so-called problems to find. Recall that a topological space is a Baire space if the intersection
of any countable family of dense subsets of the space is also dense subset of the space.

Example 3.7. To prove the Baire Theorem for Complete Metric Spaces (i.e., the theorem which
asserts that any complete metric space is a Baire space), it suffices to verify that, for any non-
empty open set O and for any countable family {Un : n ∈ N} of dense open sets, the problem
({O},

⋂
n∈N

Un,3) is a viable problem.

Later on we will show that the above example is easier to handle if transformed into a
countable chain of viable related problems.

The notion of viability of a problem, introduced by Veloso in [22] (page 25), is related to the
notion of solvability of the problem. However, a solution of a problem for Veloso is represented by
a function, not by a relation, as it is the case in our work. We will use the terminology solution
function to denote these objects that are, instead of solution relations, solution functions.

Definition 3.8. Let P = (I, S, σ) be any viable Kolgomorov problem. A solution function for
P is a function f : I → S satisfying f ⊆ σ – or, equivalently, f is a S-valued function with
domain I such that for every instance z of P we have that f(z) solves z.

Veloso (op. cit) has defined a notion of solvability according to his definition of solution –
that is, in our terms, a Kolgomorov problem P is solvable if P has a solution function. As one
of the easiest equivalent statements of the Axiom of Choice is precisely “Every relation contains
a function with the same domain” (see page 131 of [12]), it is straightforward to check that,
within ZFC (i.e., assuming the Axiom of Choice), the following equivalences hold:

Proposition 3.9 (viable is solvable in ZFC). Let P = (I, S, σ) be any Kolgomorov problem.
The following statements are equivalent:

(i) The Kolmogorov problem P is viable.
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(ii) The problem P is solvable.
(iii) The problem P satisfies the formula (∀z ∈ I)(∃s ∈ S)[z σ s].

The preceding proposition was also stated by Veloso. The only non-obvious implication
((i) −→ (ii)) follows easily from the equivalence of the Axiom of Choice mentioned above.

Still following Veloso’s definitions from [22], next we define the notions of links and reduction
links between problems. We point out that the notion of “reduction link” will be defined in terms
of “solution functions”. Again, this context is intrinsically associated to the Axiom of Choice, as
we will discuss later.

Definition 3.10 (Links and reduction links [22]). Let P = (I,X, σ) and P ′ = (I ′, X ′, σ′) be two
Kolgomorov problems.

(i) A link from P to P ′ is a pair of functions (f, F ), where

f : I → I ′ is said to be a translation function; and
F : S′ → S is said to be a recovery function.

(ii) A link (f, F ) from P to P ′ is called a reduction link of P to P ′ if it lifts solution
functions from P ′ to P , i.e. for every solution function g of P ′ the composite function F ◦ g ◦ f
is a solution function for P .

From now on we identify the class of all Veloso problems with the objects of the category
PVunb. Next we show that morphisms of this category correspond to reduction links between
the corresponding problems.

Proposition 3.11. Let P = (I,X, σ) and P ′ = (I ′, X ′, σ′) be objects of PVunb, considered as
Kolgomorov problems. If (f, F ) is a morphism witnessing the order P 6GT P ′, then (f, F ) is a
reduction link of P to P ′.

Proof:. Let g be an arbitrary solution function for the problem P ′. As we know that (f, F ) is a
morphism from P ′ to P , we know that for all z ∈ I and t ∈ S′ the following implication holds:

f(z)σ′ t −→ z σ F (t)

Fix an arbitrary z ∈ I. As g ⊆ σ′, for t = g(f(z)) we have that f(z)σ′ t, and therefore

zσF (t) = F (g(f(z))

and thus (z, F (g(f(z)) ∈ σ. By the arbitrariness of z, we conclude that F ◦ g ◦ f ⊆ σ and so the
composite function F ◦ g ◦ f is a solution function for P , as desired. �

So, given Kolgomorov problems P and P ′ with a Dialectica morphism (f, F ) witnessing the
inequality P 6GT P ′ in the Galois-Tukey ordering, we are allowed to interpret such inequality as
a measure of complexity, since a solution of P may be reduced to a solution of P ′ – thus under
P 6GT P ′ we can say that P is as easy to solve as P ′, or that P is not more complicated to be
solved than P ′.

We have shown that the existence of solution functions for viable problems is ensured by
the Axiom of Choice (Proposition 3.9). As Veloso’s reduction links were defined in terms of
solution functions, it is clear that this approach presupposes a choice principle. In the following
results, we will show more, as it will be established that assuming that Veloso’s approach holds
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in full generality gives rise to a number of equivalents of the Axiom of Choice (or of weak related
statements). For the rest of this section, our base theory is ZF.

Theorem 3.12. AC is equivalent to the following statement:

“Every Veloso problem has a solution function” .

Proof:. (⇒) Let P = (I, S, σ) be a Veloso problem. By the MHD condition (1), P is viable
and so dom(σ) = I. As in the proof of Proposition 3.9, the existence of a solution function is
guaranteed by the equivalent of AC given by the statement “Every relation contains a function
with same domain”.
(⇐) It was remarked in [19] that AC is equivalent to the following statement:

“For every infinite set X, there is a choice function defined on P(X) \ {∅} – that is, there is
f : P(X) \ {∅} → X such that f(Y ) ∈ Y for all ∅ 6= Y ⊆ X.”

So, let X be any infinite set. The problem

(P(X) \ {∅}, X,3)

is clearly viable (since non-empty subsets have elements, by definition) and non-generic (given
x ∈ X one has that Y = X \ {x} is not solved by x). A solution function for this problem is,
clearly, a choice function for P(X) \ {∅}. As X was taken arbitrarily, we have established AC
by the above remark. �

It follows from the previous theorem that in the absence of the Axiom of Choice there will
be Veloso problems in PVunb without any solution function.

Notice that, if P ′ is a Veloso problem without a solution function, it is vacuously true that
any link from P to P ′ (for any given P ) is a reduction link. Motivated by this, we introduce the
following definition:

Definition 3.13. Let P, P ′ be problems in PVunb. A morphism (f, F ) from P ′ to P is said to
be realized as a reduction link if the statement “(f, F ) is a reduction link from P to P’ ”
holds non-vacuously.

If all morphisms have to be realized as reduction links, then the Axiom of Choice must be
present, as the following theorem shows.

Theorem 3.14. AC is equivalent to the statement

“Every morphism of PVunb is realized as a reduction link ”.

Proof:. (⇒) Given a morphism from P ′ to P , AC implies that P ′ has solution functions
(by 3.12), and the rest follows from Proposition 3.11 and from the definition of “realized as a
reduction link”.
(⇐) Given any infinite set X, we are able to consider the object of PVunb given by

P = (P(X) \ {∅}, X,3).

and the corresponding identity morphism (id, id) from P to P . If we assume that (id, id) is
realized as a reduction link then there is a solution link for P , which will be a choice function for

P(X) \ {∅}.
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As X was taken arbitrarily, we obtain AC in the same way as in Theorem 3.12 �

There are several set-theoretical statements which are referred to, in the literature, as weak
choice principles. Weak choice principles are implied by the Axiom of Choice AC, but they are
not equivalent to it, and are often regarded as “fragments” or “partial cases” of AC. To identify
the precise amount of choice which is needed for a particular argument/result is a fruitful and
current line of research (akin to Reverse Mathematics) within Set Theory. This may be seen in
the standard reference [8] and in the dozens of papers which have cited it over the last twenty
years.

The Axiom of Countable Choice (usually denoted by ACω) is one of the most celebrated
weak choice principles. It corresponds to the restriction of the Axiom of Choice to countable
families of non-empty sets, that is, it asserts that “Every countable family of non-empty sets has
a choice function”, or if {Xn : n ∈ N} if a countable family of non-empty sets then there is a
function

f : {Xn : n ∈ N} →
⋃
n∈N

Xn

such that f(Xn) ∈ Xn for all n ∈ N.
In the following theorem, we prove an equivalent of countable choice ACω in terms of Veloso

problems – more specifically, in terms of Veloso problems whose instance sets are countable.

Theorem 3.15. The Axiom of Countable Choice ACω is equivalent to the following statement:

“Every Veloso problem whose set of instances is countable has a solution function”.

Proof:. (⇒) Let P = (I, S, σ) be a Veloso problem, on which the instance set I is a countable
set. Enumerate I = {zn : n ∈ N}. As P is viable, we know that

(∀n ∈ N)(∃s ∈ S)[zn σ s]

and so for every n ∈ N the set
Fn = {s ∈ S : zn σ s}

is a non-empty set. Applying ACω to the countable family of non-empty sets given by

F = {Fn : n ∈ N},

we get a choice function g : F →
⋃
F with g ⊆ σ – so that zn σ g(Fn) for all n ∈ N. A solution

function f for the problem P = (I, S, σ) is now easily defined by putting, for every z ∈ I,

f(z) = g(Fm) ⇐⇒ z = zm.

(⇐) Let F = {Xn : n ∈ N} be a countable family of non-empty sets. We have to show that
there is a choice function for such family, i.e. we have to exhibit a function f : F →

⋃
F such

that f(Xn) ∈ Xn for all n ∈ N.
Consider the set X given by

X =
⋃
n∈N

({n} ×Xn)

and let σ ⊆ N×X be the binary relation defined in the following way:

nσ x ⇐⇒ Π1(x) = n,
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where Π1 denotes the projection on the first coordinate. In other words, for all (m, z) ∈ X we
have that nσ (m, z) if, and only if, n = m.

Consider the problem (N, X, σ). As F is supposed to be a family of non-empty sets, such
problem is viable, and (as N is infinite) it is easy to check that it is also non-generic. So, (N, X, σ)
is a Veloso problem. By hypothesis, there is a solution function of (N, X, σ), say g : N → X.
Now we define

f : F →
⋃
n∈N

Xn

by putting
f(Fn) = Π2(g(n))

for all n ∈ N. It should be clear that f is a choice function for F . �

The reader may check that we could have proved versions of the three preceding theorems
stated only in terms of viable problems. In fact, Veloso himself has observed that the equivalence
between AC and the statement “Every viable problem has a solution” holds ([22], page 35).
However, as the problem (P(X)\{∅}, X,3) is a Veloso problem (i.e., viable and non-generic) for
any infinite set X – and it is, basically, the problem which appears in several parts of the proofs
-, we have preferred to point out that the class of Veloso problems is enough, in each case, to
provide an equivalence with the corresponding choice principle.

The final result of this section will be stated in terms of viable problems only. First, we will
introduce the notion of ℵ0-chain of viable problems.

Definition 3.16 (chain of viable problems). Let {In : n ∈ N} be a family of non-empty sets and
{σn : n ∈ N} be a family of binary relations such that, for all n ∈ N,

σn ⊆ In × In+1.

Let Sn = In+1 and Pn = (In, Sn, σn) for all n ∈ N. We say that 〈Pn : n ∈ N〉 is an ℵ0-chain of
viable problems if all problems Pn are viable, i.e. for all n ∈ N one has

∀z ∈ In ∃s ∈ Sn [z σn s].

The preceding definition aims to capture the very common situation in Mathematics on which
one has to solve a N-sequence of chained problems, where the solution of the n-th problem is an
instance of the (n + 1)-problem. In such situation one wishes, of course, to produce a sequence
of solutions.

Definition 3.17. Let 〈Pn : n ∈ N〉 be an ℵ0-chain of viable problems, where Pn = (In, Sn, σn)
and Sn = In+1 for all n ∈ N. A solution sequence for 〈Pn : n ∈ N〉 is a sequence 〈zn : n ∈ N〉
such that zn ∈ In and znσnzn+1 for all n ∈ N.

We present below a mathematical example where the above concepts play an important role.

Example 3.18. The usual proof of the Baire Category Theorem for complete metric spaces given
in the textbooks may be encoded by a ℵ0-chain of viable problems.

Let us see why. Let {Un : n ∈ N} be a countable family of dense open sets of a complete
metric space M and let O be an arbitrary non-empty open set (as in Example 3.7). We have to
show that the intersection of all the Un’s meets O. We let In be the family of all non-empty open
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sets whose diameter is less than 1
n+1 and whose closures are included in Un ∩ O, and let σn be

the reverse inclusion. It is easy to check that all of the problems 〈In, Sn, σn〉 (where Sn = In+1)
are viable problems. If 〈Vn : n ∈ N〉 is a solution sequence for such ℵ0-chain of problems, then( ⋂
n∈N

Un)∩0 is ensured to be non-empty, since {Vn : n ∈ N} is a decreasing sequence of non-empty

closed sets whose diameters converge to zero, so it has non-empty intersection in the complete
metric space M – and, by the definition of the In’s, any point of such intersection testifies that( ⋂
n∈N

Un) ∩ 0 6= ∅.

What is usually not said in the textbooks about the preceding example is that a solution
sequence for the ℵ0-chain of viable problems is given by the Principle of Dependent Choices,
denoted by DC, which is another celebrated weak choice principle1. The Principle of Dependent
Choices states:

“If δ is a binary relation on a non-empty set A (i.e. δ ⊆ A×A) satisfying

(∀x ∈ A)(∃y ∈ A)[x δ y],

then there is a sequence 〈xn : n ∈ N〉 of elements of A such that xn δ xn+1 for all n ∈ N”.

The principle DC is regarded as the precise amount of choice needed to make a countable
number of consecutive arbitrary choices. It is well-known that the Axiom of Choice is stronger
than the Principle of Dependent Choice which is stronger than the Axiom of Countable Choice,
i.e.

AC⇒ DC⇒ ACω,

and that none of those implications is reversible. More information on these and many other
weak choice principles may be found in [8].

In what follows, we present equivalents of DC in terms of ℵ0-chains of viable problems.

Theorem 3.19. The following statements are equivalent:

(i) The Principle of Dependent Choices, DC;
(ii) For any ℵ0-chain of viable problems 〈Pn : n ∈ N〉 (where, for all n ∈ N, Pn = (In, Sn, σn)

and Sn = In+1) and for every instance z ∈ I0, there is a solution sequence 〈zn : n ∈ N〉 for this
ℵ0-chain with z0 = z; and

(iii) Every ℵ0-chain of viable problems has a solution sequence.

Proof:.(i) ⇒ (ii): Let 〈Pn : n ∈ N〉 be as in the statement. We define a set A whose elements
are, precisely, all (k + 1)-tuples

(z0, z1, . . . , zk),

where k ranges over all natural numbers, z0 = z, zi ∈ Ii for all 0 6 i 6 k and also zi σi zi+1 for
all 0 6 i 6 k − 1 if k > 0. We define, over the tuples of A, a relation δ such that

(w0, w1, . . . , wk) δ (t0, t1, . . . , tj)

if k < j and wi = ti for all 0 6 i 6 k – that is, δ is the usual strict prefix order over the tuples.
As all of the problems of the ℵ0-chain are viable by definition, it is easy to check that the

set A and the relation δ satisfy the requirements one needs to apply the Principle of Dependent
Choices. So, by DC, there is a sequence 〈sn : n ∈ N〉 of tuples such that sn δ sn+1 for all n ∈ N.

1In fact, the Principle of Dependent Choices is equivalent to the Baire Theorem for complete metric spaces, as
shown in [1].
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If we identify each tuple with the corresponding finite sequence, we get a compatible family of
functions (in fact, an increasing chain of compatible finite functions), and so the union of such
family is a function. It is easy to check that the obtained sequence z =

⋃
n∈N

sn is a solution

sequence for the ℵ0-chain with z0 = z, as desired.

(ii)⇒ (iii): Obvious.

(iii)⇒ (i): If A and δ are under the hypothesis of DC, then A is a non-empty set and (A,A, δ)
is a viable problem. Then we just have to consider the ℵ0-chain 〈Pn : n ∈ N〉 where In = Sn = A
and σn = δ for all n ∈ N. By (iii) we may assume that there is a solution sequence for this
ℵ0-chain, say 〈zn : n ∈ N〉. So, this sequence satisfies zn δ zn+1 for all n ∈ N. As A and δ were
taken arbitrarily, we have just established DC – and the proof is then finished. �

We have shown that the Axiom of Countable Choice, the Principle of Dependent Choices and
the fully-fledged Axiom of Choice correspond to natural (sub-)classes of problems, as described
by Kolmogorov and Veloso.

4 Tight Coupled Problems

In this short section we discuss how the notion of a “tight coupled reduction link” between
problems can be seen as a previously known variant of the Dialectica construction we have
discussed so far.

The way in which the notion of reduction link of P to P ′ was defined (item (ii) of Definition
3.10) seems to suggest that there is no tight connection or “coupling”, in general, between
problems P and P ′ – as pointed out by Veloso in the page 28 of [22]. Veloso argues that a
reduction link of P to P ′ is, in most cases, uncoupled in the following sense: after applying the
translation function f on an instance z of P , we may forget completely about P and only care
about solving the instance f(z) of P ′ – and, after that, any solution t ∈ S′ of the instance f(z) of
P ′ will generate a solution of the instance z of P by applying the recovery function F . However,
in certain situations (see example below), it is interesting to allow the use of some additional
information during the recovery process.

For this case, Veloso defines tightly coupled links from P to P ′ in the following way: the
translation function is still some f : I → I ′ but the recovery function is a function F : I×S′ → S
so that the information on the original instance z of P may be used at the time of recovery –
that is, the pair (f, F ) needs to satisfy the following condition: for any z ∈ I and any t ∈ S′,

f(z)σ′ t −→ z σ F (z, t).

This requirement on the tightly coupled links corresponds, precisely, to the morphisms of the
dual of Dial(Sets) (the simplest case of the “original” Dialectica category, inspired by Gödel’s
Dialectica Interpretation and introduced by the first author in [4]).

Example 4.1 (Reduction with tight coupled link). Using tight coupled links, one can formally
prove that the problem of finding a normal line of a surface through a certain point is not more
complicated than the problem of finding orthogonal planes to a certain plane.

In this example, we use surface for a two-dimensional differential manifold S ⊆ R3, and
therefore given a point x ∈ S there is a tangent plane Tx(S) centred at x. Recall that if x is a
point of a plane π ⊆ R3 then a line l through x is the normal line of the plane π (through x)
if l is perpendicular to all lines of π which go through x, and if x is a point of a surface S then
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the normal line of S through x is the normal line of the tangent plane Tx(S) through x. Two
intersecting planes π and ρ are said to be orthogonal if for every point of the intersection line the
normal lines of π are contained in ρ and vice-versa. Notice that if l is the normal line of a plane
π through x then l is included in every plane ρ which is orthogonal to π and passes through x
– in other words, all planes which are orthogonal to a given plane π and passes through a given
point share the normal line of π through this very same point.

Let L be the family of all lines of the 3-dimensional Euclidean space R3 and P the family
of all planes of R3. For a given surface S, the problem of finding the normal lines through each
point of the surface is (S,L, σ), where xσ l means “l is the normal line of S through x” for every
point x ∈ S and every line l ∈ L, and the problem of finding orthogonal planes is (P,P, ξ), where
π ξ ρ means “π and ρ are orthogonal planes” for all planes π and ρ in R3.

A tight coupled link from (S,L, σ) to (P,P, ξ) is given by the pair (f, F ), where f : S → P
is defined by putting f(x) = Tx(S) for all x ∈ S and F : S × P → L is given by F (x, ρ) =
ϕ(Tx(S), ρ, x), where ϕ : P ×P ×R3 → L is defined by putting ϕ(π, ρ, x) = the line l contained
in the plane t(x, ρ) (where t(x, ρ) is ρ itself if x ∈ ρ or is the unique plane parallel to ρ passing
through x otherwise) which is perpendicular to the intersecting line of π and t(x, ρ) through x,
if π and ρ are orthogonal planes; and any previously fixed line otherwise. In view of the fact
remarked at the end of the previous paragraph, it is easy to see that F (x, ρ) is the normal line
of Tx(S) through x (and thus, of S) whenever ρ is a plane orthogonal to f(x) = Tx(S). Notice
that the described reduction link formalizes the following mental procedure: “if I know how to
produce an orthogonal plane for any given plane, then I know how to produce the normal line
of a surface S at a point x: we take any plane ρ that is orthogonal to Tx(S), translate it to x –
via parallel translation – and then consider the perpendicular line (through x and contained in
the translated plane) of the intersection line of Tx(S) and the translated plane”.

This shows one case where the information on the original problem instance (the original
point x) is required for the recovery function F of the tight coupled link (f, F ) that reduces the
original problem of “finding normal lines to a given point in the surface” to the new problem
of “finding orthogonal planes”. This problem is particularly nice, as it seems to connect to
approaches to automatic differentiation under development using categorical machinery in [5].
More research work is required here.

5 Conclusions and Further Work

We have shown that the work of Kolmogorov can be regarded as a bridge between the abstract
problems Veloso discussed in his Theory of Mathematical Problems and the complexity problems
Blass discussed in [2]. This bridge can be seen by means of the categorical Dialectica constructions
GC and DC introduced in [16].

Veloso’s Critical Retrospect in [22] already observed that his approach on viable Kolgomorov
problems relies heavily on the Axiom of Choice and asks whether such approach (together with
some suggested techniques on decomposition of problems) was “tainted” by AC – since the
mathematical entities whose existence depend on the Axiom of Choice (and statements about
those entities) are the usual examples of non-constructive notions in Mathematics, and he aimed
his approach to incorporate constructivity at some level. In this paper we have proceed with
this line of research and we introduced a restricted class of Kolgomorov problems, which we call
Veloso Problems, and we have shown that if we restrict ourselves to this class and assume that
the presented machinery holds in full generality then we get, again, equivalences of the Axiom of
Choice. We have also shown that some related/restricted notions on problems are intrinsically
associated to weak choice principles such as the Axiom of Countable Choice and the Principle
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of Dependent Choices. To determine precisely the deductive strength of assertions relating to
Kolgomorov and Veloso problems (positioning them in the hierarchy of weak choice principles)
seems to deserve further research, and the same could be said about the following question:

Question 5.1 (implicit in [22]). How to deal with the above mentioned non-constructive aspects
of Kolgomorov-Veloso theory of problems within constructive environments?

The work in this paper shows that some answers to this question are obtained by focusing on
relations, instead of functions. In fact, equivalences with choice principles arise from assuming
either the existence of solution functions (Theorems 3.12, 3.14 and 3.15) or of solution sequences
(Theorem 3.19).

Veloso (op.cit.) presents some arguments against the use of relations instead of functions
in the representation of solutions of problems. He argues that if the solution of a problem can
be represented as a relation, then the problem condition itself, σ, would be a solution of the
problem, and so nothing more would need to be done; to know the specification of the problem
would solve it automatically. Second, he argues that, if one wants to assume that some instance
z ∈ I could be solved by more than one element of the set of possible solutions S then, even in
this case, it is possible to work with a representation using functions, but in this case one should
work with the so-called multifunctions, or multivalued functions. If I is the set of instances and
S is the set of possible solutions of a viable problem P , a multifunction solution f would be,
formally, a function with domain I and codomain P(S) (i.e, the set of all subsets of S) such that,
for every z ∈ I, f(z) is the subset of S given by {s ∈ S : z σ s} – that is, the use of multivalued
solution functions consists in associating each instance z ∈ I to the set of all of its particular
solutions.

Replying to the first argument, in practical applications, to know the definition of the con-
dition problem σ does not give a solution automatically (even less the set of all solutions) for
an instance z ∈ I. In simple/naive cases, the more realistic approach would be, probably, to
proceed with some decision problem/search problem considering, for each z ∈ I, the set {z}× S
as a domain and with ({z} × S) ∩ σ as the set of yes-instances for this problem. So, to know
the problem condition does not solve the problem. For instance, one may consider the vi-
able problem ({ζ},C, σ), on which ζ is Riemann’s zeta function and σ is the relation given by
ζ σ c ⇐⇒ ζ(c) = 0 – that is, σ is the restriction to {ζ} of the very general problem of finding
zeros of analytic functions. Despite σ being perfectly (and easily) defined, we still do not know
(after more than 150 years, see [3]) whether there are complex numbers (apart from the even
negative numbers) with real part distinct from 1

2 which solve the problem.
For the second objection against relations as solutions, we would like to mention two points.

The first is that, if we decide to work with the powerset P(S) instead of S, then we are dramati-
cally increasing the cardinality of the sets we are dealing with. For problems where any instance
has only a finite set of solutions there is perhaps no major issue but we want to work with
theories where problems have instances with possible infinite solutions. (Actually the set-theory
applications do insist on infinite sets.) As some features of the theory may depend on the cardi-
nalities of the constituents of the triples of the corresponding categories (as in the definitions of
PV and PVX for a given infinite set X, see Definitions 3.1 and 3.2), it would not be desirable
such a dramatic increase in cardinality. The second argument is that if we assume f(z) to be the
set of all solutions (for f a multivalued solution function and z some instance of the problem)
then we have all solutions for z “locked inside a box”; these solutions may become individually
inaccessible and this precludes a qualitative analysis of them. We prefer to have the possibility
of comparing distinct solutions for any fixed instance of the problem we are solving. Thus we
insist that relations are a better modelling tool than functions, one that allows us to move on to
functions, when and if we feel AC is adequate.
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A second main conclusion for us is that the notions of reduction between problems, considered
by Kolmogorov, Veloso and Blass, seen to be well modelled by the categorical morphisms in either
Dial2(Sets), its dual or the original dialectica construction. A skeptical reader may complain
that the categorical language used is not buying us much. We beg to differ: the possibility of
relating formally these, to begin with, quite ‘woolly’ notions of problems and solutions, seems
a serious step forward in the hard task of detecting unwarranted foundational assumptions that
tend to ‘sneak’ into mathematics. We still need to investigate whether the traditional tools of
category theory, e.g. products, coproducts, exponentials, (co-)limits, etc. can be leveraged to our
advantage. And, apart of such traditional tools, we are also interested in the investigation of the
possible interactions between the Dialectica categorical modelling of problems and the so-called
lenses ([7], [21]). Lenses are constructions used in situations where some structure is converted
to different forms – through actions and observations between environments and agents – in
such a way that all changes made can be reflected as updates to the original structure. Such
constructions have attracted the attention of several researchers over the past ten years (see also
[14], and references therein).

A possible avenue for further work from this point on would be to connect the categorical
semantics meaning of Dial2(Sets) (logically speaking Dial2(Sets) models Linear Logic, together
with Intuitionistic Propositional Logic) to, yet to be conceived, models of Ecumenical Proposi-
tional Logic. Ecumenical Propositional Logic [17] is Prawitz’ recent suggestion of how to consider
under the same umbrella both intuitionsitic and classical principles, as used by mathematicians.
Since both Kolmogorov and Veloso mentioned their intentions of being understood by both
classical and intuitionistic mathematicians, it would be extremely nice if the categorical models
discussed here could help with modelling ecumenical logic. However new insights will be required
to deal with the traditional issues of modelling categorically classical logic.
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