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Abstract

We introduce the notion of a Gödel fibration, which is a fibration categorically
embodying both the logical principle of traditional Skolemization (we can exchange
the order of quantifiers paying the price of a functional) and the existence of a
prenex normal form presentation for every logical formula. Building up from Hof-
stra’s earlier fibrational characterization of the de Paiva’s categorical Dialectica
construction, we show that a fibration is an instance of the Dialectica construction
if and only if it is a Gödel fibration. This result establishes an internal presentation
of the Dialectica construction. Then we provide a deep structural analysis of the
Dialectica construction producing a full description of which categorical structure
behaves well with respect to this construction, focusing on (weak) finite products
and coproducts. We conclude describing the applications we envisage for this gen-
eralized fibrational version of the Dialectica construction.

Introduction

Historically, the Dialectica interpretation was devised by Gödel [10] to prove the consis-
tency of arithmetic. The interpretation allowed him to reduce the problem of proving
the consistency of first-order arithmetic to the problem of proving the consistency of
a simply-typed system of computable functionals, the well-known System T. The key
feature of the translation is that it turns formulae of arbitrary quantifier complexity into
formulae of the form ∃x∀yα(x, y).

Over the years, several authors have explained the Dialectica interpretation in cate-
gorical terms. In particular, de Paiva [7] introduced the notion of Dialectica categories
as an internal version of Gödel’s Dialectica Interpretation. The idea is to construct a
category Dial(C) from a category C with finite limits. The main focus in de Paiva’s
original work is on the categorical structure of the category Dial(C) obtained, as this
notion of a Dialectica category turns out to be also a model of Girard’s Linear Logic [9].

This construction was first generalized by Hyland, who investigated the Dialectica
construction associated to a fibred preorder [12]. Later Biering in her PhD work [3]
studied the Dialectica construction for an arbitrary cloven fibration.

Meanwhile Hofstra [11] wrote an exposition and interpretation of the Dialectica con-
struction from a modern categorical perspective, emphasizing its universal properties.

1

http://arxiv.org/abs/2104.14021v1


His work gives centre stage to the well-known concepts of monads, simple products and
co-products. We take Hofstra’s work as the basis for our work here.

Hofstra shows that the original Dialectica construction Dial can be seen as the com-
position of two free constructions Sum and Prod, which are the simple co-product and
product completions, respectively. These completions are fully dual, so we only need to
study one and can then deduce results for the other construction. However the whole
Dialectica construction is not fully dual, as indicated by the order of the composition of
the completions. Our work explains when the Dialectica construction can be performed,
which hypotheses are necessary for the categorical construction, which properties of the
construction are preserved and why. Most importantly we are able to connect these
preservation properties to the logic of the original interpretation, leading up to the defi-
nition of what we call the Gödel fibration.

Our contributions

The main contributions of this paper are the following.

1. We formalize the notion of fibrational quantifier-free formula. Given Hofstra’s char-
acterization it is clear that instances of the Dialectica construction should have simple
products and co-products, as the construction introduces completions under these. What
else is necessary to get us a Dialectica construction? The first novelty of this work is
the characterization of ‘covering quantifier-free objects’ of a fibration. These objects
correspond to formulas in the logic system that are quantifier-free. Of course, as usually
happens in a categorical framework, such a syntactical notion of ’being quantifier-free’
needs to be formalized in terms of a universal property. The logical intuition behind our
definition, is that an element α of a fibration p is called quantifier-free if it satisfies the
following universal property, expressed in the internal language of p: if there is a proof
π of a statement ∃iβ(i) assuming α, then there exists a witness t, which depends on the
proof π, together with a proof of β(t). Moreover, this must hold for every re-indexing
α(f), because in logic if α(x) is quantifier-free then α(x)[f/x] = α(f) is quantifier-
free. The covering requirement, as usual, means that, for every formula of the form
i : I | α(i), there exists a formula β(i, a, b) quantifier-free that is provably equivalent to
it α(i) ⊣⊢ ∃a∀bβ(i, a, b).

Notice that these requirements reflect Gödel’s original translation and, at the same time,
they recall standard conditions used in category theory to say that a category is free for
a given structure. One could think for example about the condition of having enough
projectives in the exact completion of Carboni [4].

2. We introduce the notion of a Gödel fibration. A Gödel fibration is a fibration with
simple products and simple co-products, which, most importantly, admits a class of for-
mal sub-objects which are free from products and co-products and cover all the elements
of the fibre. Then we prove that a Gödel fibration is a fibration categorically embody-
ing both the logical principle of traditional Skolemization and the existence of a prenex
normal presentation for every logical formula.

3. We provide a better definition of a Dialectica category. We prove that a given fibration
is an instance of the Dialectica construction if and only if it is a Gödel fibration. This
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result allows us to give a better definition of a Dialectica category because it shows
which properties an arbitrary category should satisfy to be an instance of the Dialectica
construction. In other words, given a fibration p there exists a fibration p′ such that
p ∼= Dial(p′) if and only if p is a Gödel fibration. From a categorical perspective, we
have classified the free-algebras for the Dialectica monad.

4. We prove that a Dialectica fibration satisfies a strong constructive feature in terms of
witnesses. We have shown that in the internal language of a Dialectica fibration, i.e. in
the logic theory that canonically corresponds to this categorical notion, if there is a proof
π of a statement ∃i α(i), then there exists a witness t, which depends on the proof π,
together with a proof of α(t). This principle is sometimes called the Rule of Choice. For
example, Regular Logic (https://ncatlab.org/nlab/show/regular+logic) satisfies
this principle, see [25].

5. We investigate which categorical structures are preserved by the Dialectica monad.
We focus our attention on fibred (weak) finite products, fibred (weak) finite co-products
and their associativities. Using Hofstra’s decomposition of the monad Dial into its two
parts, simple coproducts and products Sum(Prod), we prove first that the preservation
of fibred weak finite products and coproducts together with their associativities depends
on the existence of left and right weak adjoints to re-indexing functors along its injections
in the starting fibration, and points in its base category. This base category is assumed
to be a distributive category. These hypotheses are quite natural since, for example, the
sub-object fibration on a category with well-behaved sums and points, e.g. Set, satisfies
all of these requirements. Moreover, these assumptions are also satisfied by the result-
ing fibration. Under these hypotheses we have shown that the Dialectica construction
preserves fibred weak finite products and co-products. Moreover, we show that, under
these assumptions, the total category Dial(p) has finite weak products and coproducts.

Related work

In this work we combine the generalization of the Dialectica construction presented by
Hofstra in [11], with the structural analysis of the Dialectica construction due to Hyland
[12] and Biering [2]. The works of Hyland and Biering extend the results provided by de
Paiva in [7] to the fibrational setting, in particular, they provide sufficient conditions to
make the Dialectica category associated to a cloven fibration into a category with finite
products. Our framework shares some of their assumptions, as we are also aiming for
a total category with products. We require the existence of right-weakly left adjoints
and left-weakly right adjoints to the re-indexing functors (along the injections in the
basis of a given fibration). This is the main ingredient of our notion of an extendable
fibration (see Definition 5.5). These fibrations will provide us with (weak) products and
coproducts in the total category.

Another work which deals with structures preserved by Dialectica-like constructions,
is the work of Moss and von Glehn [20], where the authors are interested not in the
original construction, but in a modified version of Gödel’s Dialectica interpretation for
models of intensional Martin-Löf type-theory, through the notion of fibred display map
category. Their work focus on the preservation of the type constructors, while they
drop the layer of predicates from their Dialectica propositions, considering only those
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Dialectica propositions of the form ∃x∀y⊤. In fact, they call their construction the
polynomial model, explaining that this name fits better, because they are considering the
predicate-free Dialectica construction.

Finally, Topos-and tripos-theoretic versions of the Dialectica construction have been
studied by Biering in [3], while the recent work of Shulman [21], describes a ”polycat-
egorical” version of a generalization of the Dialectica construction. Other applications
of completions involving universal and existential quantifiers can be found in [25, 24, 8],
where similar constructions are presented in the language of doctrines.

1 Logical Fibrations

The basic reference to connecting logic and fibrations in Jacob’s book [13]. We recall the
basic facts that we need from the book in the appendix.

But in general we say that a fibration has fibred ⋄’s if all fibre categories have ⋄’s
and substitution functors preserve ⋄’s.

We review some necessary background on fibrations and completions.

Definition 1.1. Let p : E −→ B be a functor and X
f
−→ Y an arrow in E. Let us call

A
u:=p(f)
−−−−−→ B the arrow p(f) of B. We say that f is Cartesian over u if, for every

morphism Z
g
−→ Y in E such that p(g) factors through u, p(g) = uw, there exists a unique

Z
h
−→ X of E such that g = fh and p(h) = w.

Definition 1.2. A fibration is a functor p : E −→ B such that, for every Y in E and

every I
u
−→ pY , there exists a Cartesian arrow X

f
−→ Y over u.

For a given fibration p : E −→ B, and for any A in B, let EA be the fibre category
over A: its objects are the objects X of E such that pX = A, and its morphisms, which

are said to be vertical , are the morphisms X
f
−→ Y of E such that p(f) = idA.

Recall from [13] that a fibration is called cloven if it comes together with a choice
of Cartesian liftings (a choice of cartesian liftings is called a cleavage); and it is called
split if it is cloven and the given liftings are well-behaved in the sense that they satisfy
certain functoriality conditions.

In case a fibration p : E −→ B is equipped with a cleavage, for every morphism

B
u
−→ p(Y ) of B we denote the chosen cartesian lifting of u by u∗(Y )

uY
−−→ Y . Then we

can define the substitution functor :

EB
u∗

−→ EA

sending X to u∗(X) and a vertical morphism X
f
−→ Y to the unique mediating map u∗f

in:

u∗(X)

u∗f

��✤
✤

✤

uX // X

f

��
u∗(Y )

uY
// Y.
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Proposition 1.3 (Prop. 9.2.1 [13]). Let p : E −→ B be a fibration with finite products in
its base category B. The p has fibred finite product if and only if the total category E has
finite products via fibred functors, and the functor p strictly preserves these products.

One of the pillars of categorical logic is Lawvere’s crucial intuition which considers
logical languages and theories as indexed categories and studies their 2-categorical prop-
erties. In this setting connectives and quantifiers are characterized in terms of adjointness
relations [14, 15, 16].

In this fibrational setting, the intuition is that the base category B of a fibration
p : E −→ B represents the category of (type-theoretical) contexts, a fibre EI represents the
propositions α(i) in the context I, and the morphisms are proofs. Cartesian morphisms
of p induce a re-indexing or substitution operation. From this perspective, the simple
form of quantification is described in terms of adjoints to weakening functors π∗ along
projections π. For example, the existential quantification is given by an operation

∐

π∗ :
EA×B → EA, which sends a proposition α(a, b) to ∃b α(a, b).

Now we briefly recall the formal definition of a fibration with simple products (or
simple universal quantification) and coproducts (or simple existential quantification).
For a complete presentation of the theory of fibrations and its connection to type theory,
we refer the reader to [13]. In this work, we will assume that a fibration p is always
cloven and split, i.e. that the re-indexing operation is functorial. 1

Definition 1.4. A fibration p : E −→ B with a cleavage over a category B with finite
products has simple coproducts when all weakening functors, i.e. the Cartesian lifitngs
of projections, have left adjoints satisfying Beck-Chevalley Condition (BCC) for
pullback squares of the form:

I ×X
❴
✤

πI //

f×idX

��

I

f

��
J ×X

πJ

// J.

Dually, a fibration p : E −→ B has simple products, when weakening functors have
right adjoints satisfying BCC.

The next concept we are going to introduce is that of opposite of a fibration. Recall
from [13, Lemma 1.4.10] that, given a fibration p : E −→ B, for every cleavage of p one
has the isomorphism of sets (or classes):

E(X,Y )
∼=
→

∐

u:pX→pY

EpX(X,u∗(Y ))

f 7→ (pf, f ′)

where
∐

is the disjoint union and f ′ is the unique vertical arrow such that f =
(pf(pY ))f ′. This means that a morphism in a total category E corresponds to a mor-
phism in the basis together with a vertical map. The intuition behind the definition of
the opposite is that all vertical maps in such composites are reversed.

Definition 1.5 (Jacobs [13]). Let p : E −→ B be a fibration. We describe a new fibration
on the same basis written as pop : E(op) −→ B, which is fibrewise the opposite of p.

1These definitions can be found in pages 47 and 49 of [13].
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Let CV be the class:

{(f1, f2)|f1 is Cartesian, f2 is vertical anddom(f1) = dom(f2)}.

An equivalence realtion is defined on the collection CV by (f1, f2) ∼ (g1, g2) if there
exists an arrow h such that f1 = g1h and f2 = g2h. The equivalence class of (f1, f2) is
denoted by [f1, f2]. The total category E(op) has the same objects of E, and morphisms
X → Y are equivalence classes [f1, f2] of arrows f1 and f2, as in

X

•
f1

//

f2

OO

Y

The composition [g1, g2] ◦ [f1, f2] is described by the following diagram:

X

A
f1 //

f2

OO

Y

(pf1)
∗B

x

OO

pf1B

// B
g1 //

g2

OO

Z

where x is the unique vertical arrow arising by cartesianity of f1 and making the diagram
commute. We define the composition [g1, g2] ◦ [f1, f2] to be the class:

[g1(pf1B), f2x]

which turns out to be well-defined. See [13, Definition 1.10.11] for more details.
The functor pop : E(op) −→ B is defined by the assignments X 7→ pX and [f1, f2] 7→

p(f1), It is well-defined since f2 is vertical.

Lemma 1.6. Let p : E −→ B be a fibration. Then it is the case that:

1. pop : E(op) −→ B is a fibration, and a morphism [f1, f2] is a Cartesian arrow if and
only if f2 is an isomorphism;

2. for every object A of the base category B, there is a natural isomorphism E
(op)
A
∼=

(EA)
op, i.e. the fibration pop is the fibrewise opposite of p.

The following useful lemma says that, as in ordinary category theory one has that a
category C has finite limits if and only if Cop has finite colimits, a similar result exists
for fibred categories, since the opposite of a fibration is its fibrewise opposite.

Lemma 1.7. Let p : E −→ B be a fibration. Then it it the case that:

1. there is an isomorphism of fibration (pop)op ∼= p;

2. p has fibered limits if and only if pop has fibered colimits;
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3. p has simple products if and only if pop simple coproducts.

We conclude the current section by stating and proving the following:

Lemma 1.8. Let p : E −→ B and p′ : E′ −→ B be fibrations and let F be a morphism
of fibrations p → p′, i.e. F is a functor E → E′ such that p′F = p and F preserves
cartesian morphisms over a given arrow of B.

Let us assume that F is an equivalence on the fibres, i.e. F ↾EI : EI → E′
I is an

equivalence for every object I of B. Then F is fully faithful.

Proof. Let X and Y be objects of E. Then:

E(X,Y ) ∼=
∐

u:pX→pY

EpX(X,u
∗(Y )) ∼=

∐

u:pX→pY

E′
pX(FX,Fu∗(Y ))

∼=
∐

u:p′FX→p′FY

E′
p′FX(FX, u∗(FY )) ∼= E′(FX,FY )

and we are done.

We conclude this section by recalling the 2-categorical structure of fibrations. We
define Cfib the 2-category of cloven, split fibrations. The objects of Cfib are cloven, split
fibrations p : E −→ B. For fibrations p : E −→ B and q : D −→ B′, a 1-cell is a pair
(F0, F1) of functors such that the diagram

D
F0 //

q

��

E

p

��
B′

F1

// B

commutes, where F0 is a fibred functor, i.e. it sends q-cartesian arrow to p-cartesian
arrow. A 2-cell from (F0, F1) to (G0, G1) is a pair (φ0, φ1) of natural transformations

F0
φ0
−→ G0, F1

φ1
−→ G1 such that ip.φ0 = φ1.iq, i.e. for every X of D we have p(φ0)X =

(φ1)qX .

2 The dialectica monad

In this section we assume that p : E −→ B is a cloven and split fibration whose base
category B has finite products. First we recall from Hofstra’s [11] the free construction
which adds simple coproducts to a fibration, and then the dual construction which freely
adds simple products.

Simple coproducts completion. The category Sum(p) has:

• as objects triples (I,X, α), where I and X are objects of the base category B and
α is an object of the fibre EI×X ;

• as morphisms triples (I,X, α)
(f0,f1,φ)
−−−−−−→ (J, Y, β), where I

f0
−→ J and I ×X

f1
−→ Y

are arrows of B and α
φ
−→ 〈f0πI , f1〉

∗(β) is a morphism of the fibre category EI×X .

7



The category Sum(p) is fibred over B via the first component projection and this fi-
bration is denoted by Sum(p) : Sum(p) −→ B. This fibration is called the simple
coproduct (or sum) completion of p. The intuition behind this definition is that an
object (I,X, α) of the fibre category Sum(p)I represents a formula (∃x : X)α(i, x). The
assignment p 7→ Sum(p) extends to a KZ pseudo-monad on the 2-category of cloven split
fibrations, see [11, Ttheorem 3.9].

Remark 2.1 (A presentation of Sum(p) reindexing functors). Let p : E −→ B be a

cloven and split fibration. Let I
f
−→ J be an arrow of B and let (J, Y, β) be an object of

Sum(p)J . Then the triple:

( I
f
−→ J, I × Y

πY−−→ Y, 〈fπI , πY 〉
∗β

1〈fπI ,πY 〉∗β

−−−−−−−−→ 〈fπI , πY 〉
∗β )

is Sum(p)-cartesian (I, Y, 〈fπI , πY 〉
∗β)→ (J, Y, β) over I

f
−→ J . In particular Sum(p) is

endowed with a cloven and split structure. If:

(J, Y, β)
(J×Y

g
−→Y ′, β

γ
−→〈πJ ,g〉

∗β′)
−−−−−−−−−−−−−−−−−−→ (J, Y ′, β′)

is an arrow of Sum(p)J (observe the omission of the first component, as it is forced to
be the identity arrow on J) then its f -reindexing is the pair:

(I, Y, 〈fπI , πY 〉
∗β)

(g〈fπI ,πY 〉, 〈fπI ,πY 〉∗γ)
−−−−−−−−−−−−−−−−→ (I, Y ′, 〈fπI , πY ′〉∗β′)

of Sum(p)I , whose first component is the arrow I × Y
g〈fπI ,πY 〉
−−−−−−−→ Y ′ of B and whose

second one is the arrow:

〈fπI , πY 〉
∗β

〈fπI ,πY 〉∗γ
−−−−−−−→ 〈fπI , πY 〉

∗〈πJ , g〉
∗β′ = 〈πI , g〈fπI , πY 〉〉

∗〈fπI , πY ′〉∗β′

of EI×Y .

Now, let us assume that f is a projection J × K
πJ−−→ J . In this particular case

(in which we are mostly interested) such an annoying presentation collapses into the
following easier one: the πJ -weakening of the arrow (g, γ) of Sum(p)J is the pair:

(J ×K,Y, 〈πJ , πY 〉
∗β)

(g〈πJ ,πY 〉,〈πJ ,πY 〉∗γ)
−−−−−−−−−−−−−−→ (J ×K,Y ′, 〈πJ , πY ′〉∗β′)

of Sum(p)I , whose first component is the arrow J ×K × Y
g〈πJ ,πY 〉
−−−−−−→ Y ′ of B and whose

second one is the arrow:

〈πJ , πY 〉
∗β

〈πJ ,πY 〉∗γ
−−−−−−−→ 〈πJ , πY 〉

∗〈πJ , g〉
∗β′ = 〈〈πJ , πK〉, g〈πJ , πY 〉〉

∗〈πJ , πY ′〉∗β′

of EJ×K×Y .

Remark 2.2 (Sum(p) has simple coproducts). Let p be a cloven and split fibration and

let us consider a projection J ×K
πJ−−→ J of B. The left adjoint

∐

πJ
of the πJ -weakening

π∗
J in Sum(p) (see Remark 2.1) exists and sends an arrow:

(J ×K,Y, β)
(J×K×Y

g
−→Y ′, β

γ
−→〈〈πJ ,πK〉,g〉∗β′)

−−−−−−−−−−−−−−−−−−−−−−−−→ (J ×K,Y ′, β′)

8



of Sum(p)J×K to the arrow:

(J,K × Y, β)
(J×K×Y

〈πK,g〉
−−−−→K×Y ′, β

γ
−→〈πJ ,〈πK ,g〉〉

∗β′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (J,K × Y ′, β′)

of Sum(p)J , which we also denote as:

∐

πJ

(J ×K,Y, β)

∐
πJ

(g,γ)
−−−−−−→

∐

πJ

(J ×K,Y ′, β′).

Remark 2.3. Let p : E −→ B be a fibration and consider its simple coproduct completion
Sum(p) : Sum(p) −→ B. As a consequence of Remark 2.2, every element (I, A, α) of the
fibre Sum(p)I equals the object

∐

πI
(I ×A, 1, α).

Notice that, by dualising the previous construction, one gets the notion of simple
product completion together with its analogous version of the previous characterization.

Simple products completion. The category Prod(p) is the one:

• whose objects are triples (I,X, α), where I and X are objects of the base category
B and α is an object of the fibre EI×X ;

• whose morphisms are triples (I,X, α)
(f0,f1,φ)
−−−−−−→ (J, Y, β), where I

f0
−→ J and

I × Y
f1
−→ X are arrows of B and 〈πI , f1〉

∗(α)
φ
−→ 〈f0πI , πY 〉

∗(β) is a morphism of
the fibre category EI×X .

Again, the category Prod(p) is fibred over B via first component projection and this
fibration is denoted by Prod(p) : Prod(p) −→ B and called simple product completion
of p. The intuition behind this definition is that an object (I,X, α) of the fibre category
Prod(p)I represents a formula (∀x : X)α(i, x).

Proposition 2.4. There is an isomorphism of fibrations:

Prod(p) ∼= Sum(pop)op

which is natural in p.

Again, the assignment p 7→ Sum(p) extends to a co-KZ pseudo-monad on the 2-
category of cloven split fibrations, and its 2-category of pseudo-algebras is equivalent to
the 2-category of fibrations with simple products, see [11, Theorem 3.12].

We conclude this section by recalling the presentation of the dialectica construction
and its presentation via the product-coproduct completions.

Dialectica construction. Let p : E −→ B be a fibration. Define a category Dial(p) as
follows:

• objects are quadruples (I,X, U, α) where I,X and U are objects of the base cat-
egory B and α ∈ EI×X×U is an objects of the fibre of p over I ×X × U ;

• a morphism from (I,X, U, α) to (J, Y, V, β) is a quadruple (f, f0, f1, φ) where

1. I
f
−→ J is a morphism in B;

9



2. I ×X
f0
−→ Y is a morphism in B;

3. I ×X × V
f1
−→ U is a morphism in B;

4. α(i, x, f1(i, x, v))
φ
−→ β(f(i), f0(i, x), v) is an arrow in the fibre over I×X×V .

This is a fibration on B with the projection on the first component. The key observation
of Hofstra is that the construction of the fibration Dial(p) can be decomposed in two
steps.

Lemma 2.5 (Hofstra [11]). There is an isomorphism of fibrations, natural in p:

Dial(p) ∼= Sum(Prod(p)).

Notice that the pseudo-functor Sum(Prod(−)) is not a pseudo-monad in general,
but, in the case the base category B of a fibration p : E −→ B is cartesian closed, one can
shows that there exists a pseudo-distributive law

ProdSum
λ
−→ SumProd

of pseudo-monads, see [11, Theorem 4.4]. Therefore, by the known equivalence between
lifting and pseudo-distributive laws, see for example [22, 23], in this case we have that
Sum(Prod(−)) is a pseudo-monad.

An notably advantage of this algebraic presentation of the dialectica construction, is
that the principle of Skolemisation is represented by the pseudo-distributive law λ.

Theorem 2.6. When the base category B of a fibration p is cartesian closed, the fibration
Dial(p) stisfy the principle

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx)

for every α.

3 The notion of Skolem and Gödel fibrations

When one deals with quantification, for example in first-order logic, it is very common to
assert something like a formula α is quantifier-free. This assertion has a natural meaning
from a syntactic point of view, but it is not clear how it should be presented from a
categorical perspective. The aim of the following definitions, which are generalizations
of definitions in [25] to the fibrational setting, is to capture the common property of those
elements of a given fibration p : E −→ B which will appear as quantifier-free propositions
in the internal language of the fibration p. We start by defining when an element of a
fibre of p is free from the existential quantifier, and then we dualize the definition for the
universal quantifier. (Recall that the symbols

∐

and
∏

represent the logical quantifiers
∃ and ∀.)

The logical intuition behind the next definition is that an element α is quantifier-
free if it satisfies the following universal property: if there is a proof π of a statement
∃i β(i) assuming α, then there exists a witness t, which depends on the proof π, together
with a proof of β(t). Moreover, we require that this holds for every re-indexing α(f)
because in logic quantifier-free propositions are stable under substitution, i.e. if α(x) is
quantifier-free then α(f) is quantifier-free.
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Definition 3.1. Let p : E −→ B be a fibration with simple coproducts. An object α of
the fibre EI is said to be

∐

-quantifier-free if it enjoys the following universal property.
For every arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:

f∗α
h
−→

∐

πA

β

of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g
−→ B of B

and a unique vertical arrow f∗α
h
−→ 〈1A, g〉

∗β of EA such that h equals the composition:

(

f∗α
h
−→ 〈1A, g〉

∗β
〈1A,g〉

∗ηβ
−−−−−−→ 〈1A, g〉

∗
(

π∗
A

∐

πA

β
)

=
∐

πA

β
)

where β
ηβ
−→ π∗

A

∐

πA
β is the unit at β of the adjunction

∐

πA
⊣ π∗

A.

Clarifying the concrete meaning of Definition 3.1, the given object α of EI represents

a formula α(i). Given an arrow A
f
−→ I a term fa : I is in the context a : A, and it is

the case that f∗α represents the corresponding formula α(fa). The object β of EA×B

corresponds to a formula β(a, b), the object
∐

πA
β represents the formula (∃b)β(a, b),

which is in the same context a : A of α(fa). Meanwhile, the object 〈1A, g〉
∗β is again the

re-indexing of β(a, b) through an arrow A
〈1A,g〉
−−−−→ A×B, hence it represents the formula

β(a, ga), which is in the same context a : A of α(fa) and (∃b)β(a, b).
Thus the property we require of the formula α(i) is the following: whenever there is a

proof (an arrow h) of (∃b)β(a, b) from α(fa) (for some term fa : I in the context a : A),
then there is a unique term ga : B in the context a : A together with a unique proof h of
β(a, ga) from α(fa), in such a way that, adding at the end of the proof h the canonical
proof of (∃b)β(a, b) from β(a, ga) (which is represented by the re-indexing of the unit
at β of the adjunction

∐

πA
⊣ π∗

A), we get back to the proof h itself of (∃b)β(a, b) from
α(fa).

Observe that this is precisely the universal property, that we presented before Defi-
nition 3.1, enjoyed by a formula which is free from existential quantification.

Remark 3.2. Notice that if we consider a fibration p with simple coproducts, then one
can define a sub-fibration p′ → p such that the fibres of p′ are given by

∐

-quantifier-free
objects, and the base category of p′ is the same of p. This follows since

∐

-quantifier-free
objects are stable under re-indexing by definition.

The next concept we are going to need in the categorical setting reminds that of
existence of a prenex normal form used in logic. Recall, for example from [6], that in
(classical) FOL every formula is equivalent to some formula in prenex normal form.

Definition 3.3. We say that a fibration with simple coproducts p : E −→ B has enough
∐

-quantifier-free objects if, for every object I of B and for every element α ∈ EI ,
there exist an object A and a

∐

-quantifier-free object β in EI×A such that α ∼=
∐

πI
β.
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By duality we can define the same concept with respect to the universal quantifier.

Definition 3.4. Let p : E −→ B be a fibration with simple products. An object α of the
fibre EI is said to be

∏

-quantifier-free if it enjoys the following universal property:
for every arrow f and every projection πA in B as follows:

A×B
πA // A

f // I

and every vertical arrow:
∏

πA

β
h
−→ f∗α

of EA, where β is an object of the fibre EA×B, there exist a unique arrow A
g
−→ B of B

and a unique vertical arrow 〈1A, g〉
∗β

h
−→ f∗α of EA such that h equals the composition:

(

∏

πA

β = 〈1A, g〉
∗
(

π∗
A

∏

πA

β
) 〈1A,g〉

∗εβ
−−−−−−→ 〈1A, g〉

∗β
h
−→ f∗α

)

where π∗
A

∏

πA
β

εβ
−→ β is the counit at β of the adjunction π∗

A ⊣
∏

πA
.

Definition 3.5. We say that a fibration with simple products p : E −→ B has enough-
∏

-quantifier-free objects if, for every object I of B and for every element α ∈ EI ,
there exist an object A and a

∏

-quantifier-free object β in EI×A such that α ∼=
∏

πI
(β).

Now we can introduce a particular kind of fibration called a Skolem fibration. The
name is chosen because these fibrations satisfy a version of the traditional principle of
Skolemization, as presented in [10] and [11].

Definition 3.6. A fibration p : E −→ B is called a Skolem fibration if:

• its base category B is cartesian closed;

• the fibration p has simple products and simple coproducts;

• the fibration p has enough
∐

-quantifier-free objects.

•

∐

-quantifier-free objects are stable under simple products, i.e. if α ∈ EI is a
∐

-
quantifier-free object, then

∏

π(α) is a
∐

-quantifier-free object for every projection
π from I.

Notice that the last point of Definition 3.6 implies that, given a Skolem fibration
p : E −→ B, the sub-fibration p′ : E′ −→ B of

∐

-quantifier-free objects of p defined in
Remark 3.2 has simple products.

Proposition 3.7. (Skolemization) Every Skolem fibration p validates the principle:

∀x∃yα(i, x, y) ∼= ∃f∀xα(i, x, fx).
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Proof. Let us consider an element α ∈ EA1×A2×B and a
∐

-quantifier-free object γ ∈

EA1 . Hence, for every arrow π∗
1(γ)

h
−→

∐

〈π1,π2〉
(α), there is a unique pair (g, h) where

A1 × A2
g
−→ B and π∗

1(γ)
h
−→ 〈π1, π2, g〉

∗(α). Since B has exponents, then we have that

g induces a unique arrow A1
m
−→ BA2 such 〈π1, π2, g〉 = 〈π1, π2, ev〈π1, π2〉〉〈π1, π2,mπ1〉.

Therefore we have an arrow

π∗
1(γ)

h
−→ 〈π1, π2,mπ1〉

∗(〈π1, π2, ev〈π1, π2〉〉(α)).

Since p has simply products, h induces a unique arrow

γ
h
−→

∐

π1

〈π1, π2,mπ1〉
∗(〈π1, π2, ev〈π1, π2〉〉(α)).

Notice that the following square

A1 ×A2
π1 //

〈π1,pr2,mπ1〉

��

A1

〈idA1 ,m〉

��
A1 ×A2 ×B

A2

〈π1,π3〉
// A1 ×B

A2

is a pullback, hence by the BCC we have that
∏

π1
〈π1, π2,mπ1〉

∗ ∼= 〈idA1 ,m〉
∏

〈π1,π3〉
.

Thus, we get that an arrow f induces a unique pair of arrows (m,h), but again (since
p has enough

∐

-quantifier-free objects) this pair represents a unique arrow of the fibre
EA1(γ,

∐

π3

∏

〈π1,π1〉
(〈π1, π2, ev〈π1, π2〉〉(α)), i.e. the fibre

EA1×A2(π
∗
1(γ),

∐

〈π1,π2〉

(α))

is isomorphic to

EA1(γ,
∐

π1

∏

〈π1,π3〉

(〈π1, π2, ev〈π1, π2〉〉(α))

and this means exactly that

∏

π1

∐

〈π1,π2〉

(α) ∼=
∐

π1

∏

〈π1,π3〉

(〈π1, π2, ev〈π1, π2〉〉(α).

The proof for the general case where γ is a generic element of the fibre and not a
∐

-quantifier-free object, follows by the observation that the arrows π∗(γ) −→ β are in
bijection with those of the form π∗

1(γ
′) −→

∐

π2
β for appropriate projections, and where

γ′ is the
∐

-quantifier-free element which covers γ.

Combining Definitions 3.3, 3.5 and 3.6, we introduce the notion of a Gödel fibration.
The idea is that a Gödel fibration is a Skolem fibration, such that every formula α(i)
is equivalent to a formula in prenex normal form with respect to p, i.e. there exists a
formula β(x, y, i) free from quantifiers, such that α(i) ∼= ∃x∀yβ(x, y, i).
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Definition 3.8. A Skolem fibration p : E −→ B is called a Gödel fibration if the sub-
fibration p′ : E′ −→ B, whose elements are

∐

-quantifier-free objects, has enough
∏

-
quantifier-free objects.

Remark 3.9. Observe that if we consider a Gödel fibration p : E −→ B, an element
which is a

∏

-quantifier-free object in the sub-fibration p′ could not be
∏

-quantifier-
free object of the Gödel fibration. This because in Definition 3.8 of Gödel fibration,
the universal property of being a

∏

-quantifier-free object is required to hold only with
respect to the

∐

-quantifier-free objects of p.

The following proposition is an immediate consequence of Definition 3.8.

Proposition 3.10 (Prenex normal form). In a Gödel fibration p : E −→ B, for every
element α of a fibre EI there exists an element β such that

α(i) ∼= ∃x∀yβ(x, y, i)

and β is
∏

-quantifier-free in the sub-fibration p′ of
∐

-quantifier-free objects of p.

Proof. Let us consider an element α of the fibre EI . Since p is a Gödel fibration, hence in
particular a Skolem fibration, the fibration p has enough

∐

-quantifier-free objects, and
hence there exists an element γ in the fibre EI×X such that α ∼=

∐

πI
(γ). Therefore, since

the sub-fibration p′ has enough
∏

-quantifier-free objects, there exists a
∏

-quantifier free
element β of p′ in the fibre EI×X×Y such that γ ∼=

∏

πX
(β), and hence α ∼=

∐

πI

∏

πX
(β).

4 An intrinsic description of the dialectica construc-
tion

Proposition 4.1. Let p : E −→ B be a fibration, and let us consider the simple coproduct
completion Sum(p). Let I be an object of B and let α be an object of its fibre EI . Then
every object of the form (I, 1, α) in the fibre Sum(p)I is

∐

-quantifier-free element of
Sum(p).

Proof. Let us consider an arrow

ηp(α) = (I, 1, α)
(f,φ)
−−−→

∐

πI

(I ×A,B, β)

where I
f=〈g1,g2〉
−−−−−−→ A×B. We are going to prove that

ηp(α)
(g2,φ)
−−−−→ 〈1I , g1〉

∗(I ×A,B, β)

is an arrow of Sum(p)I and that (f, φ) = (〈1I , g1〉
∗ηβ)(g2, φ), where ηβ is the unit at

(I ×A,B, β) of the adjunction
∐

πI
⊣ π∗

I .

Moreover, we have to prove that such a choice of arrows I
g
−→ A of B and ηp(α)

h
−→

〈1I , h〉
∗(I ×A,B, β) of Sum(p)I is unique. That is, whenever the equality:

(f, φ) = (〈1I , g〉
∗ηβ)h
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holds, it is the case that g = g1 and h = (g2, φ).
By Remarks 2.1 and 2.2, it is the case that

∐

πI
(I × A,B, β) = (I, A × B, β), and

that 〈1I , g1〉
∗(I, A×B, β) = (I, B, 〈πI , g1πI , πB〉

∗β), where πI and πB are the projections
from I ×B. Then:

ηp(α)
(g2,φ)
−−−−→ 〈1I , g1〉

∗(I ×A,B, β) = (I, B, 〈πI , g1πI , πB〉
∗β)

is a morphism of Sum(p)I since I
g2
−→ B is an arrow of B and:

α
φ
−→ 〈1I , g2〉

∗〈πI , g1πI , πB〉
∗β = 〈1I , g1, g2〉

∗β = 〈1I , f〉
∗β

is a vertical morphism of EI . Observe that ηβ is the transpose along the adjunction
∐

πI
⊣ π∗

I of the identity arrow of (I, A × B, β) =
∐

πI
(I × A,B, β). Hence ηβ is the

arrow:

(I ×A,B, β)
(πA×B ,1β)
−−−−−−−→ (I ×A,A× B, 〈πI , πA×B〉

∗β)

and its 〈1I , g1〉-reindexing is the arrow:

(I, B, 〈πI , g1πI , πB〉
∗β)

(〈g1πI ,πB〉, 1〈πI,g1πI,πB〉∗β)
−−−−−−−−−−−−−−−−−−−→ (I, A×B, β)

whose precomposition by (g2, φ) yields indeed the arrow (f, φ).

Let us assume that the equality:

(f, φ) = (〈1I , g〉
∗ηβ)h (1)

holds for some arrow I
g
−→ A of B and ηp(α)

h=(h2,ψ)
−−−−−−→ 〈1I , h〉

∗(I × A,B, β) of Sum(p)I .
As it is the case that:

〈1I , g〉
∗ηβ = (〈gπI , πB〉, 1〈πI ,gπI ,πB〉∗β)

one might compute the right-hand side of the equality (1) and infer the equality:

(f, φ) = (〈g, h2〉, ψ)

which implies that g = g1 and h = (h2, ψ) = (g2, φ).

Remark 4.2. Let p : E −→ B be a fibration and let I be an object of B. Let us

consider an arrow (I, A, α)
(f,φ)
−−−→ (I, B, β) of Sum(p)I . As (I, A, α) =

∐

πI
(I × A, 1, α),

we might consider its exponential transpose (I × A, 1, α)
(1I×A,f,φ)
−−−−−−−→ π∗

I (I, B, β) = (I ×
A,B, 〈πI , πB〉

∗β), which is the unique arrow making the following diagram:

∐

πI
(I ×A, 1, α)

(1I ,f,φ) //

∐
πI

(1I×A,f,φ)

��

(I, B, β)

∐

πI
π∗
I (I, B, β)

ε(I,B,β)

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
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commute. Moreover, as (I × A,B, 〈πI , πB〉
∗β) =

∐

πI×A
(I × A × B, 1, 〈πI , πB〉

∗β), by

Proposition 4.1, the arrow (1I×A, f, φ) factors uniquely as the arrow:

(I ×A, 1, α)
(!,φ)
−−−→ 〈1I×A, f〉

∗(I ×A×B, 1, 〈πI , πB〉
∗β) = (I ×A, 1, 〈πI , f〉

∗β)

(which can be uniquely expressed as the image (p →֒ Sum(p))φ of the arrow α
φ
−→

〈πI , f〉
∗β of EI×A) followed by the arrow:

(I ×A, 1, 〈πI , f〉
∗β)

〈1I×A,f〉
∗η(I×A×B,1,〈πI ,πB〉∗β)

−−−−−−−−−−−−−−−−−−−−→
∐

πI×A

(I ×A×B, 1, 〈πI , πB〉
∗β)

which is the 〈1I×A, f〉-reindexing of the unit:

(I ×A×B, 1, 〈πI , πB〉
∗β)

η(I×A×B,1,〈πI ,πB〉∗β)

−−−−−−−−−−−−−−→ (I ×A×B,B, 〈πI , πB〉
∗β)

of the adjunction
∐

πI×A
⊣ π∗

I×A.

Notice that in Proposition 4.1 the elements of the form (I, 1, α) represent propositions
which are free from the existential quantifier.

Remark 4.3. The analogous of Remark 4.2 can be proved for a fibration having enough
∐

-quantifier-free objects. In other words, in this kind of fibrations the arrows of the fibres
are completely described by arrows between quantifier-free objects, unit and counit of
adjunctions given by coproducts.

Proposition 4.4. Whenever p : E −→ B is a fibration, then the
∐

-quantifier-free objects
of Sum(p) are up to isomorphism the elements of the form (I, 1, α). In particular, since
every object (I, B, β) of Sum(p) satisfies:

(I, B, β) ∼=
∐

πI

(I ×B, 1, β)

where πI is the projection I×B → I, it is the case that Sum(p) has enough
∐

-quantifier-
free objects.

Proof. Whenever f is an arrow A → I of B, it is the case that the f -reindexing of
(I, 1, α) is the triple (A, 1, f∗α), which is still a quantifier free formula, that is, its second
component is terminal in B. Hence, the

∐

-quantifier-freeness of (I, 1, α) follows from
Proposition 4.1.

Viceversa, let us assume that the triple (I, A, α) is
∐

-quantifier-free and let us con-
sider its identity arrow (I, A, α)→ (I, A, α) =

∐

πI
(I×A, 1, α). By

∐

-quantifier-freeness,

there are an arrow I
g
−→ A of B and an arrow:

(I, A, α)
(I×A

!
−→1, α

φ
−→π∗

I 〈1I ,g〉
∗α=〈πI ,gπI〉

∗α)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈1I , g〉

∗(I ×A, 1, α) = (I, 1, 〈1I , g〉
∗α)

of Sum(p)I such that the identity arrow (πA, 1α) of (I, A, α) equals the composition:

(

(I, A, α)
(I×A

!
−→1, φ)

−−−−−−−−→ (I, 1, 〈1I , g〉
∗α)

(g,1〈1I ,g〉∗α)
−−−−−−−−→ (I, A, α)

)
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where the couple (g, 1〈1I ,g〉∗α) is nothing but the 〈1I , g〉-reindexing of the unit at (I ×
A, 1, α) of the adjunction

∐

πI
⊣ π∗

I . We infer by this arrow equality that it needs to be

the case that (I ×A
πA−−→ A) = (I ×A

πI−→ I
g
−→ A) and that:

( α
φ
−→ 〈πI , gπI〉

∗α = 〈πI , πA〉
∗α = α

1α−→ α ) = 1α

which means that φ = 1α. Finally we observe that the composition:

(I, 1, 〈1I , g〉
∗α)

(g,1〈1I ,g〉∗α)
−−−−−−−−→ (I, A, α)

(I×A
!
−→1, φ=1α)

−−−−−−−−−−−→ (I, 1, 〈1I , g〉
∗α)

equals the identity arrow (I×1
!
−→ 1, 1〈1I ,g〉∗α). This concludes that the couple (I×A

!
−→

1, 1α) is actually an isomorphism (I, A, α) ∼= (I, 1, 〈1I , g〉
∗α).

Now we have all the instrument to give an internal description of the free-algebras
for the pseudo-monad which adds the simple coproducts to a given fibration.

Theorem 4.5. A fibration p : E −→ B with simple coproducts is an instance of simple
coproduct completion if and only if it has enough

∐

-quantifier-free objects.

Proof. We define p : E −→ B the full-subfibration of p : E −→ B such that the objects of
E are the

∐

-free-quantifers. By the universal property of the inclusion morphism p →֒
Sum(p), there is unique a morphism of fibrations with simple coproducts F : Sum(p) −→

p commuting with the inclusion morphisms p
ηp
→֒ Sum(p) and p →֒ p. We claim that F

is an equivalence of fibrations. At first we observe its essential surjectivity and secondly
its full faithfulness. From now on, whenever π is a projection in B, we indicate as

∐

π

the left adjoint to the π-weakening w.r.t. Sum(p) and as
∑

π the one w.r.t. p. Observe
that:

F (I, 1, γ) = F
(

p
ηp
→֒ Sum(p)

)

γ = (p →֒ p)γ = γ

for every I in B and every γ in EI .

Essential surjectivity. Let α be an object of E and let I be the object pα of B.
Since p has enough

∐

-quantifier-free objects, there are J in B and β in EI×J such that
∑

πI
β ∼= α. Since F preserves simple coproducts, it is the case that:

F (I, J, β) = F
∐

πI

(I × J, 1, β) =
∑

πI

F (I × J, 1, β) =
∑

πI

β

and we are done. Observe that (I, J, β) is an object of EI , hence the functor EI → E′
I

induced by F is essentially surjective as well.

Full faithfulness. We use Lemma 1.8 and prove that, for a given object I of B,
the functor F gives rise to an equivalence EI → E′

I . As the essential surjectivity of
F ↾EI : EI → E′

I follows by the previous part, we only need to observe its full faithfulness.

By Remark 4.2 we write a given arrow (I, A, α)
(f,φ)
−−−→ (I, B, β) of EI as the compo-

sition:
ε(I,B,β)

(

∐

πI

〈1I×A, f〉
∗η(I×A×B,1,〈πI ,πB〉∗β)

)(

∐

πI

(p →֒ Sum(p))φ
)
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and this factorisation is unique, because of the uniqueness of adjoint transposition, be-
cause of the uniqueness-part of Proposition 4.1 and because of faithfulness of the functor
p →֒ Sum(p). As F is forced to preserve simple coproducts and commutes with the

inclusion morphisms p
ηp
→֒ Sum(p) and p →֒ p, the arrow F (f, φ) equals the composition:

ε(
∑

πI
β)

(

∑

πI

〈1I×A, f〉
∗η〈πI ,πB〉∗β

)(

∑

πI

φ
)

which is indeed an arrow
∑

πI
α →

∑

πI
β. Observe that, analogously, every arrow

∑

πI
α →

∑

πI
β of E′

I can be uniquely factored as such a composition, again by the
existence and the uniqueness of the adjoint transposition, by Definition 3.1 (remind that
p is assumed to have

∐

-quantifier-free objects) and by full faithfulness of p →֒ p. Hence
the function:

EI((I, A, α), (I, B, β)) → E′
I

(

∑

πI

α,
∑

πI

β
)

induced by F ↾EI is bijective, i.e. F ↾EI is fully faithful.

Notice that the characterization of Theorem 4.5 can be obtained also for the simple
product completion thanks to the equivalence Prod(p) ∼= Sum(pop)op, see Proposition
2.4.

Theorem 4.6. A fibration p : E −→ B with simple products is an instance of simple
product completion if and only if it has enough-

∏

-quantifier-free objects.

Proof. It follows by Lemma 1.7, Theorem 4.5 and Proposition 2.4.

Combining Theorem 4.5 and Theorem 4.6 we can prove the following theorem, which
allows us to recognize if an arbitrary fibration p is an instance of the Dialectica construc-
tion or not, and if it is, we can construct the fibration p′ such that Dial(p′) ∼= p.

Theorem 4.7. Let p : E −→ B be a fibration with products, coproducts and such that B
is cartesian closed. Then there exists a fibration p′ such that for Dial(p′) ∼= p if and only
if p is a Gödel fibration.

Remark 4.8. Notice that from a categorical perspective Theorem 4.7 provides a char-
acterization of the free-algebras of the pseudo-monad Dial(−).

5 On fibred (weak) finite (co)products

The categorical properties of Dialectica categories were first studied by de Paiva [7],
and then by Hyland [12] and Biering [3]. Observe that all of these presentations of the
Dialectica construction correspond to the fibre Dial(p)1 (associated to an appropriate
fibration p) of the Dialectica monad introduced in [11]. The main goal of this section
is to generalize the previous results to the total category Dial(p). For this purpose, we
take advantage of the decomposition Dial(−) ∼= Sum(Prod(−)) of the Dialectica monad
into the two (dual) constructions, and we reduce the problem to the study of just one of
these two.

We first provide the minimal hypotheses that a fibration p with fibred weak finite
products and coproducts is required to satisfy so that the Dialectica monad preserves
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these structures. These hypotheses happen to be preserved as well. Then we show that
the total category itself Dial(p) has finite weak products and coproducts.

Remark 5.1. Most of the results contained in the current section arise as generalisations
of the ones contained in [26]. Let us consider for instance the following statement:

Let C be a category with finite products and let P : Cop −→ InfSL be a
doctrine, where InfSL is the category of inf-semilattices, i.e. finitely complete
posets, and inf-preserving maps, i.e. finite limit preserving functors. Then
the existential doctrine P ex : Cop −→ Pos obtained from the exact completion
of P factors through the forgetful functor InfSL →֒ Pos, i.e. P ex is still a
doctrine Cop −→ InfSL.

whose proof is contained in [24]. It basically states that the existential completion of a
doctrine preserves the existence of finite meets in its power-sets (see [26] and [24] for more
details). As long as one becomes interested in proof-relevance, the notion of doctrine can
be generalised, depending on the richness of its power-sets, that is, on its codomain cate-
gory. For instance, if one is interested in proof-relevant doctrines over a cartesian category
C and whose codomain in principle is InfSL, then the right generalised notion of such
a doctrine is the one of a functor Cop −→ CartCat, where CartCat is the category of
categories with finite products and finite product preserving functors. As we prove in the
current section, the previous statement generalises into asserting that the proof-relevant
existential completion of such a generalised doctrine is still a doctrine whose codomain
is CartCat. However, here we state and prove such a result, as well as the other ones,
by using the language of cloven and split fibrations in place of the equivalent one of
doctrines. In fact, inside this framework, ordinary doctrines of codomain Pos (InfSL
respectively) correspond to poset-fibrations (inf-semilattice-fibrations respectively), i.e.
fibrations whose fibers are posets (inf-semilattices respectively). Analogously, generalised
doctrines whose generalises power-sets enjoy some categorical property correspond to or-
dinary cloven and split fibrations whose fibers enjoy the same categorical property.

Proposition 5.2. The simple coproduct completion preserves fibred (weak) finite prod-
ucts, i.e. whenever a fibration p : E −→ B has fibred (weak) finite products, then its
simple coproduct completion Sum(p) : Sum(p) −→ B has fibred (weak) finite products as
well. Dually, the simple product completion preserves fibred (weak) finite coproducts.

Proof. We only prove the first part of the statement, as the second follows by Lemma
1.7, Proposition 2.4 and Proposition 5.2. Let I be an object of B and let us consider two
objects (I,X, α) and (I, Y, β) of the fibre Sum(p)I . Then the triple:

(I,X × Y, 〈πI , πX〉
∗α× 〈πI , πY 〉

∗β)

is a (weak) product (I,X, α)× (I, Y, β) in Sum(p)I together with the projections:

(πX , π〈πI ,πX〉∗α) and (πY , π〈πI ,πY 〉∗β)

where the πI , πX , πY are the projections from I ×X × Y , and π〈πI ,πY 〉∗α, π〈πI ,πY 〉∗β are
the projections from 〈πI , πX〉

∗α × 〈πI , πY 〉
∗β. In fact, whenever (f, φ) and (g, ψ) are

arrows:
(I, Z, γ)→ (I,X, α) and (I, Z, γ)→ (I, Y, β)
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then the couple:

(

〈f, g〉, γ
〈φ,ψ〉
−−−→ 〈πI , f〉

∗α× 〈πI , g〉
∗β = 〈πI , 〈f, g〉〉

∗(〈πI , πX〉
∗α× 〈πI , πY 〉

∗β〉)
)

is an arrow (I, Z, γ) → (I,X × Y, 〈πI , πX〉
∗α × 〈πI , πY 〉

∗β〉) making the usual triangles
commute and, if 〈πI , πX〉

∗α × 〈πI , πY 〉
∗β is strict, it is the unique one by the universal

properties of X×Y and 〈πI , πX〉
∗α×〈πI , πY 〉

∗β in B and EI×X×Y respectively. Moreover

observe that, whenever J
h
−→ I is an arrow of B, it is the case that the h-reindexing of

( I,X × Y, 〈πI , πX〉
∗α× 〈πI , πY 〉

∗β〉) is the object:

(

J,X × Y, 〈hπJ , πX , πY 〉
∗(〈πI , πX〉

∗α× 〈πI , πY 〉
∗β〉) = 〈hπJ , πX〉

∗α× 〈hπJ , πY 〉
∗β

)

which is the (weak) product of the objects (J,X, 〈hπJ , πX〉
∗α) and (J, Y, 〈hπJ , πY 〉

∗β)
in Sum(p)J .

Finally, a (weak) terminal object of the fibre Sum(p)I is (I, 1, 1I) whenever 1 is
terminal in B and its h-reindexing is (J, 1, 1J).

By Proposition 5.2 we cannot conclude that the Dialectica fibrationDial(p) has either
fibred (weak) finite coproducts or products, since Dial(−) is given by the composition of
Sum(−) and Prod(−), and the previous proposition just shows that these two comple-
tions preserve different structure. Therefore we need to provide the right assumptions
such that the simple coproduct completion preserves fibred (weak) finite coproducts and,
dually, the assumptions such that the simple product completion preserves fibred (weak)
finite products.

Proposition 5.3. Let B be a distributive category and let p : E −→ B be a fibration with
fibred (weak) finite coproducts such that the cartesian liftings w.r.t. p of the injections

A
jA
−→ A+B have left adjoints

∐

jA
which satisfy BCC for pullbacks (when they exist) of

injections which are injections themselves. Then the fibration Sum(p) has fibred (weak)
finite coproducts.

Proof. Let I be an object of B. Then, whenever 0 is initial in B, the triple (I, 0, 0I)

is a (weak) initial object of the fibre Sum(p)I and, whenever J
h
−→ I is an arrow of B,

its h-reindexing is (J, 0, 0J). Moreover, whenever (I,X, α) and (I, Y, β) are objects of
Sum(p)I , then the object:

(

I,X + Y,
(

θ−1
)∗
(

∐

jI×X

α+
∐

jI×Y

β

)

=: χ
)

where (I × X) + (I × Y )
θ
−→ I × (X + Y ) is the canonical isomorphism, is a (weak)

coproduct (I,X, α) + (I, Y, β) in Sum(p)I together with the injections:

(jXπX = πX+Y θjI×X , jαηα) and (jY πY = πX+Y θjI×Y , jβηβ)

where jαηα and jβηβ are the compositions:

α
ηα
−−→ j∗I×X

∐

jI×X

α
jα
→֒ (θjI×X)∗χ = 〈πI , jXπX〉

∗χ
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and:

β
ηβ
−→ j∗I×Y

∐

jI×Y

β
jβ
→֒ (θjI×Y )

∗χ = 〈πI , jY πY 〉
∗χ.

In fact, whenever:

( f, α
φ
−→ 〈πI , f〉

∗γ = j∗I×X〈πIθ, [f, g]〉
∗γ ) and ( g, α

ψ
−→ 〈πI , g〉

∗γ = j∗I×Y 〈πIθ, [f, g]〉
∗γ )

are arrows (I,X, α)→ (I, Z, γ) and (I, Y, β) → (I, Z, γ), denoted as φ̃ and ψ̃ the trans-
posed of φ and ψ respectively along the adjunctions

∐

I×X ⊣ j
∗
I×X and

∐

I×Y ⊣ j
∗
I×Y

respectively, then the couple:

(

[f, g]θ−1, χ
(θ−1)∗

[

φ̃,ψ̃
]

−−−−−−−−→ 〈πI , 〈f, g〉θ
−1〉∗γ

)

is an arrow (I,X × Y, χ)→ (I, Z, γ) making the usual triangles commute. If χ is strict,
then it is the unique one by the universal properties of X + Y and χ in B and EI×(X+Y )

respectively and because θ, ηα and ηβ are isomorphisms. Observe indeed that the unit
of the adjunction

∐

I×X ⊣ j
∗
I×X needs to be a natural isomorphism by BCC and because

the injection jI×X is a monomorphism, being β distributive - the same holds for the unit
of

∐

I×Y ⊣ j
∗
I×Y .

Whenever J
h
−→ I is an arrow of B, the h-reindexing of (I, 0, 0I) is (J, 0, 0J) and the

h-reindexing of (I,X + Y, χ) is the triple (J,X + Y, 〈hπJ , πX+Y 〉
∗χ) and the following

equalities hold:

〈hπJ , πX+Y 〉
∗χ = (θ−1)∗[〈hπJ , πX〉, 〈hπJ , πY 〉]

∗

(

∐

jI×X

α+
∐

jI×Y

β

)

= (θ−1)∗
(

∐

jJ×X

〈hπJ , πX〉
∗α+

∐

jJ×Y

〈hπJ , πY 〉
∗β

)

by BCC and being the squares:

J ×X

〈hπJ ,πX〉

��

jJ×X // J ×X + J × Y

��

J × Y

〈hπJ ,πY 〉

��

jJ×Y // J ×X + J × Y

��
I ×X

jI×X // I ×X + I × Y I × Y
jI×Y // I ×X + I × Y

pullbacks whose right-hand vertical arrow is the morphism [〈hπJ , πX〉, 〈hπJ , πY 〉]. Hence
the triple (J,X + Y, 〈hπJ , πX+Y 〉

∗χ) is the (weak) coproduct of the objects:

(J,X, 〈hπJ , πX〉
∗α) and (J, Y, 〈hπJ , πY 〉

∗β)

in Sum(p)J . We conclude that the h-reindexing w.r.t. Sum(p) preserves (weak) finite
coproducts.

The proof-irrelevant simple coproduct completion of poset-fibrations preserves the
existence of left adjoints to the cartesian lifting whenever the base category has points.
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That is, whenever a poset-fibration over a category with points has left adjoints to its
cartesian liftings of the injections, then its proof-irrelevant simple coproduct completion
keeps on having left adjoints to its cartesian liftings of the injections (see [26] for a proof
of this in the equivalent language of doctrines). However, this property is not enjoyed by
the proof-relevant simple coproduct completion in general, as the example below shows.

Thus a dual version of Proposition 5.3 together with Proposition 5.2 would allow
us to conclude that Dial(p) has fibred (weak) finite products, but the failure of the
preservation of adjoints along injections prevents us from concluding that Dial(p) has
fibred (weak) finite coproduct.

Example 5.4. Let us assume that there is a choice of an element a of A for every
nonempty set A and let us consider the subobject-fibration over Set. This is the fibration
p : GrSet → Set given by the projection on the first component, where GrSet is the
Grothendieck category of Set, whose objects are the pairs (A,α), where A is a set and

α is a subset of A, and whose arrows (A,α) → (B, β) are the arrows A
f
−→ B such

that α ⊆ f∗β. Observe that Set has points and that, whenever A
jA
−→ A + B is an

injection in Set, then the reindexing j∗A has a left adjoing
∐

jA
given by the assignment

(A,α ⊆ A) 7→ (A+B,α ⊆ A+B) and BCC for pullbacks is preserved. However, this is
not the case with respect to the fibration Sum(p)→ Set.

Let us consider the objects (A,C, γ) and (A+B,D, δ) ofSum(p)A andSum(p)A+B re-
spectively. Then the homset Sum(p)A+B(

∐

jA
(A,C, γ), (A+B,D, δ)) is the set of arrows

(A+B)×C
g
−→ D such that γ ⊂ 〈πA+B, g〉

∗δ, while the homsetSum(p)A((A,C, γ), j
∗
A(A+

B,D, δ)) is the set of arrows A×C
h
−→ D such that γ ⊂ 〈πA, h〉

∗j∗A×Dδ = 〈πA, h〉
∗((A×

D) ∩ δ). Then the usual assignments:

g
♯
7→

(

A× C
gjA×C
−−−−→ D

)

and h
♭
7→

(

A× C +B × C
[h,d]
→ D

)

(a, c) 7→ h(a, c)

(b, c) 7→ d

(here d is the element of D in our choice) in general do not define a bijection of these
two homsets, but a retraction only: it is indeed the case that the latter is a retract of
the former, i.e. ♯ is a retraction of ♭.

The pair of functors
∐

jA
⊣̂ j∗A is an example of the notion of right-weak adjunction,

see Appendix A.
Similar reasoning can be done for the preservation of the right adjoints to the rein-

dexing with respect to p along the injections, which we know exist. Again, if we denote
by

∏

jA
the usual candidate for the right adjoint of the jA-reindexing with respect to

Sum(p), then we realise that, between the homsets:

Sum(p)A(j
∗
A(A+B,D, δ), (A,C, γ)) and Sum(p)A+B((A+B,D, δ),

∏

jA

(A,C, γ))

in general there is not a natural bijection, but just a natural retraction. That is, the
former is a retract of the latter, and this retraction is natural. This example motivates
the notion of left-weak adjunction (see A.2 in the Appendix), a dual notion to Definition
A.1.
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The notions of right-weak and left-weak adjunction appear in a similar context in [19].
It turns out that the property of existence of right-weakly left adjoints to the cartesian
liftings of the injections is enough to make the simple coproduct completion of fibrations
preserve the existence of fibred weak finite coproducts. As usual, the dual result holds
for the simple product completion together with the fibred weak finite products. Hence,
we introduce the notion of an extendable fibration, which explains those categorical struc-
tures which are compatible, i.e. preserved, by the Dialectica interpretation.

Definition 5.5. A cloven, split fibration p : E −→ B is said to be an extendable fibra-
tion if it satisfies the following properties:

1) the category B is distributive and has points, i.e. there is an arrow 1
a
−→ A for every

non-initial object A of B;

2) the fibration p has fibred weak finite products and fibred weak finite coproducts;

3) the cartesian liftings with respect to p of the injections A
jA
−→ A + B have right-

weakly left adjoints
∐

jA
which satisfy BCC for pullbacks (when they exist) of

injections which are injections themselves;

4) the cartesian liftings with respect to p of the injections A
jA
−→ A + B have left-

weakly right adjoints
∏

jA
which satisfy BCC for pullbacks (when they exist) of

injections which are injections themselves.

Remark 5.6. If p : E −→ B is a extendable fibration the total category E has weak
products, but it does not have weak coproducts, in general. The main reason is that to
construct the coproducts in E we need to have left adjoints along all reindexing functors,
i.e. p has to be a bifibration in general, see [13].

Example 5.7. Consider the initial cartesian closed category T with a natural num-
ber object and coproducts. This category may be built, for example, using the syntax
of System T (possibly adding sums). Recall from [17] that one can define a predi-

cate of T as a morphism N
P
−→ N such that P ∗ P = P , where N × N

∗
−→ N is the

multiplication of natural numbers. In essence, a predicate is a morphism with val-
ues 0 or 1. In particular, the collection of predicates forms a boolean algebra, see
[17], with bounded existential and universal quantification where the order is defined as
follows:P ≤ Q if and only if P −̇Q = 0 where −̇ denotes truncated subtraction. There-
fore, we can consider the functor Pred : Top // Pos , where Pred(N) is the poset of
predicates, and Predh(P ) = Ph for every arrow h of T and P ∈ Pred(N). Notice that,
if we consider a predicate P ∈ Pred(N), there are two natural ways to extend this pred-
icate to a predicate of Pred(N +N). The idea is the following: consider the particular

case a function N
P
−→ N such that P has values 0 or 1. Then we can define two functions

from N + N −→ {0, 1}: P1 such that P1(a, 1) = P (a) and P1(a, 0) = 0 and P2 such that
P2(a, 1) = P (a) and P2(a, 0) = 1. Moreover, one can see that if Predj1(G) = Gj1 ≤ P ,

where N+N
G
−→ {0, 1} is a predicate, then G ≤ P2, and P ≤ Predj1(G) implies P1 ≤ G.

Formally, these assignments are exactly the left and right adjoints to the functor Predj1 ,
and more generally, the existence of left and right adjoints along injections can be proved
for the arbitrary case Pred : Top // Pos . Hence the fibration

∫

Pred −→ T corre-

sponding to the functor Pred : Top // Pos is an extendable fibration.
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Example 5.8. The sub-object fibration p : GrSet → Set on Set is an extendable fibra-
tion.

Example 5.9. The sub-object fibration over a lextensive category, see [5], with points
is an extendable fibration. This is the fibration GrC → C,where GrC is the Grothendieck
category over C. Let A,B be objects of C and let jA be the monic injection A→ A+B.
Observe that the reindexing along jA has a left adjoint

∐

jA
which acts as the post-

composition by jA: whenever (A, s) is an object of (GrC)A, i.e. s is a subobject of A, it
is the case that

∐

jA
(A, s) = (A+B, jAs).

Moreover, it has a right adjoint
∏

jA
, sending an object (A,S

s
−→ A) of (GrC)A to the

couple:

(A+B,S +B
s+1B−−−→ A+B).

Observe that s + 1B is indeed a mono: if a be an arrow X → S + B then X has

a structure of coproduct together with the injections XS
a∗iS−−−→ X and XB

a∗iB−−−→ X
obtained by pulling back along a the injections:

S
iS−→ S +B and B

iB−→ S +B

respectively. Let us denote as a1 and a2 the unique arrows XS → S and XB → B

respectively such that a = a1 + a2. Observe that the injections S
iS−→ S + B and

B
iB−→ S + B are the pullbacks along s + 1B of the arrows jA and jB, hence a

∗iS and
a∗iB are the pullbacks of jA and jB alons (s + 1B)a. This implies that, whenever b is
another arrow X → S +B such that (s+ 1B)a = (s+ 1B)b then, by appliying the same
procedure to b, we obtain the same coproduct structure (a∗iS , a

∗iB) overX . In particular
jAsa1 = (s+ 1B)a(a

∗iS) = (s+ 1B)b(a
∗iS) = jAsb1, which implies that a1 = b1, as jAs

is a monomorphism. Analogously a2 = b2, hence a = b and s + 1B is proven to be a
monomorphism.

Let S
s
−→ A be a subobject of A and let T

t
−→ A+B be a subobject of A+B. Then the

conditions (A, j∗At) = jA
∗(A+B, t) ≤ (A, s) and (A+B, t) ≤

∏

jA
(A, s) = (A+B, s+1B)

are equivalent: if the latter holds (i.e. t ⊆ s + 1B) then a mono witnessing the former
(i.e. j∗At ⊆ s) exists by the universal property of the pullback; viceversa, if the former

holds for a mono jA
∗T

m
−→ S then T

m+1B−−−−→ S +B witnesses the latter.

The previous examples highlight the fact that the existence of (weak) left and right
adjoints over reindexing, with respect to a given fibration, along injections is a natural
requeriment: it is true in many concrete instances enjoying a satisfying “power-set”
algebra. For a further evidence of the generality of our hypotheses see Proposition 5.16
below.

Theorem 5.10. If p : E −→ B is an extendable fibration, then Sum(p) is an extendable
fibration (with simple coproducts). Moreover, Sum(p) satisfies the following:

2.a) the total category Sum(p) has both weak finite products and coproducts;

2.b) if p has fibred finite products, then Sum(p) has fibred finite products and, if p has
fibred finite coproducts and left adjoints to the cartesian liftings along the injections,
then Sum(p) has fibred finite coproducts.
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Proof. First, let us verify Sum(p) to be an extendable fibration, i.e. that it satisfies
points 1), 2), 3) and 4) of Definition 5.5.

1) The base category of a fibration is not changed by the coproduct completion, hence
the first point is trivial.

2) The preservation of fibred weak finite products follows by Proposition 5.2, while the
proof that Sum(p) has fibred weak finite coproducts looks like the proof of Proposition
5.3 and the weak finite coproducts have the same presentation. However we need to
observe that the properties of the adjunctions

∐

j ⊣ j
∗ that we use there are enjoyed by

the corresponding right-weak adjunctions
∐

j ⊣̂ j
∗, whose existence we have required in

the statement of the current result, as well. In other words, we show that the properties
of the right-weak adjunction

∐

j ⊣̂ j∗ are enough to completely retrace the proof of
Proposition 5.3.

If I is an object of B and (I,X, α) and (I, Y, β) are objects of Sum(p)I , then we claim
that: the object:

(

I,X + Y,
(

θ−1
)∗
(

∐

jI×X

α+
∐

jI×Y

β

)

=: χ
)

where (I×X)+(I×Y )
θ
−→ I×(X+Y ) is the canonical isomorphism, is a weak coproduct

(I,X, α) + (I, Y, β) in Sum(p)I together with the injections:

(jXπX = πX+Y θjI×X , jαηα) and (jY πY = πX+Y θjI×Y , jβηβ)

where jαηα and jβηβ are the compositions:

α
ηα
−−→ j∗I×X

∐

jI×X

α
jα
→֒ (θjI×X)∗χ = 〈πI , jXπX〉

∗χ = (θjI×X)∗χ

and:

β
ηβ
−→ j∗I×Y

∐

jI×Y

β
jβ
→֒ (θjI×Y )

∗χ = 〈πI , jY πY 〉
∗χ = (θjI×Y )

∗χ.

Here ηα and ηβ are components of the units of the right-weak adjunctions:

∐

jI×X

⊣̂ j∗I×X and
∐

jI×Y

⊣̂ j∗I×Y

respectively (see Appendix A).
In order to prove this claim, let us assume that the couples:

( f, α
φ
−→ 〈πI , f〉

∗γ = j∗I×X〈πIθ, [f, g]〉
∗γ ) and ( g, α

ψ
−→ 〈πI , g〉

∗γ = j∗I×Y 〈πIθ, [f, g]〉
∗γ )

are arrows (I,X, α) → (I, Z, γ) and (I, Y, β) → (I, Z, γ) and let us consider the ♯-
transposes φ♯ and ψ♯ of φ and ψ respectively along the right-weak adjunctions:

∐

I×X

⊣̂ j∗I×X and
∐

I×Y

⊣̂ j∗I×Y
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respectively. Then the couple:

(

[f, g]θ−1, χ
(θ−1)∗[φ♯,ψ♯]
−−−−−−−−→ 〈πI , [f, g]θ

−1〉∗γ
)

is an arrow (I,X × Y, χ) → (I, Z, γ) making the usual triangles commute. In fact it is
the case that:

([f, g]θ−1, (θ−1)∗[φ♯, ψ♯])(jXπX , jαηα) = ([f, g]θ−1θjI×X , ((θjI×X)∗(θ−1)∗[φ♯, ψ♯])jαηα)

= (f, (j∗I×Xφ
♯)ηα)

[Proposition A.4] = (f, φ)

and analogously ([f, g]θ−1, (θ−1)∗[φ♯, ψ♯])(jY πY , jβηβ) = (g, ψ).
The facts that the weak initial object of Sum(p)I exists and that weak finite coprod-

ucts of Sum(p)I are stable under h-reindexing, where h is an arrow of B of target I,
follow as in Proposition 5.3.

3) Let us consider an object (A,C, γ) of Sum(p)A and let A
jA
−→ A+B be an injection.

We define the object
∐Sum

jA
(A,C, γ) as the triple (A + B,C, (θ−1)∗

∐

jA×C
γ). We need

to prove that the functor
∐

Sum

jA
is right-weakly left adjoint to the jA-reindexing w.r.t.

Sum(p). Let (A + B,D, δ) be an object of Sum(p)A+B. Then its jA-reindexing is

the triple (A,D, 〈jAπA, πD〉
∗δ). Whenever

(

f, (θ−1)∗
∐

jA×C
γ

φ
−→ 〈πA+B , f〉

∗δ
)

is an
arrow:

(A+B,C, (θ−1)∗
∐

jA×C

γ)→ (A+B,D, δ)

we define ♭Sum(f, φ) to be the arrow (fθjA×C , (θ
∗φ)♭), which is indeed an arrow:

(A,C, γ)→ (A,D, 〈jAπA, πD〉
∗δ).

Viceversa, whenever
(

g, γ
ψ
−→ 〈πA, g〉

∗〈jAπA, πD〉
∗δ

)

is an arrow:

(A,C, γ)→ (A,D, 〈jAπA, πD〉
∗δ)

we define ♯Sum(g, ψ) to be the arrow ([g, d!]θ−1, (θ−1)∗ψ♯), which is indeed an arrow:

(A+B,C, (θ−1)∗
∐

jA×C

γ)→ (A+B,D, δ).

It is the case that:

♭Sum♯Sum(g, ψ) = ♭Sum([g, d!]θ−1, (θ−1)∗ψ♯)

= ([g, d!]θ−1θjA×C , (θ
∗(θ−1)∗ψ♯)♭)

[since ♭ is a retraction of ♯] = (g, ψ)

hence
∐

Sum

jA
is right-weakly left adjoint to the jA-reindexing w.r.t. Sum(p) and we are

done. We are left to verify that BCC is satisfied.
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Let us assume that the square:

C
jC //

f

��

C +D

g

��
A

jA

// A+B

is a pullback and let (A,E, ǫ) be an object of Sum(p)A. We are left to prove that: the

objects
∐Sum

jC
f∗(A,E, ǫ) = (C+D,E, (θ−1)∗

∐

jC×E
(f×1E)

∗ǫ) and g∗
∐Sum

jA
(A,E, ǫ) =

(C + D,E, (g × 1E)
∗(ϕ−1)∗

∐

jA×E
ǫ) are equal, where θ and ϕ are the isomorphisms

C × E +D × E → (C +D) × E and A× E + B × E → (A + B) × E respectively. Let
us consider the following commutative diagram:

C × E

f×1E

��

jC×E // C × E +D × E

ϕ−1(g×1E)θ

��

(C +D)× E

g×1E

��

θ−1
oo πC+D // C +D

g

��
A× E

jA×E

// A× E +B × E (A+B)× E
ϕ−1

oo
πA+B

// A+B

which is a pullback, since its horizontal arrow A × E → A + B equals the arrow jAπA,
the arrow f ×1E is the pullback of f along πA and f is the pullback of g along jA (hence
f × 1E is indeed the pullback of g along jAπA). As the right-hand square is pullback,
we deduce that the left-hand square is a pullback as well. Therefore, by BBC for the
right-weak adjunctions

∐

j ⊣̂ j
∗, it is the case that:

(θ−1)∗
∐

jC×E

(f × 1E)
∗ǫ = (θ−1)∗(ϕ−1(g × 1E)θ)

∗
∐

jA×E

ǫ

= (g × 1E)
∗(ϕ−1)∗

∐

jA×E

ǫ

and we are done.

4) As usual (see [26]), we define
∏Sum

jA
(A,C, γ) to be the object:

(A+B,C, (θ−1)∗
∏

jA×C

γ)

of Sum(p) whenever (A,C, γ) is an object of Sum(p)A and A
jA
−→ A + B is an in-

jection. Whenever (A + B,D, δ) is an object of Sum(p)A+B and the pair (g, δ
φ
−→

〈πA+B , g〉
∗(θ−1)∗

∏

jA×C
γ) is an arrow (A+B,D, δ)→ (A+B,C, (θ−1)∗

∏

jA×C
γ), we

define the arrow ♯Sum(g, φ) to be the couple:

(g〈jAπA, πD〉, ε〈πA,g〈jAπA,πD〉〉∗γ〈jAπA, πD〉
∗φ)

which is actually an arrow (A,D, 〈jAπA, πD〉
∗δ) → (A,C, γ), whose second component

is the composition of the arrows:

27



• 〈jAπA, πD〉
∗δ

〈jAπA,πD〉∗φ
−−−−−−−−−→ 〈jAπA, πD〉

∗〈πA+B, g〉
∗(θ−1)∗

∏

jA×C
γ

• 〈jAπA, πD〉
∗〈πA+B , g〉

∗(θ−1)∗
∏

jA×C
γ = 〈πA, g〈jAπA, πD〉〉

∗j∗A×C

∏

jA×C
γ

• 〈πA, g〈jAπA, πD〉〉
∗j∗A×C

∏

jA×C
γ = j∗A×Dφ

∗〈πA+B , g〉
∗(θ−1)∗

∏

jA×C
γ

• j∗A×Dφ
∗〈πA+B , g〉

∗(θ−1)∗
∏

jA×C
γ = j∗A×D

∏

jA×D
〈πA, g〈jAπA, πD〉〉

∗γ

• j∗A×C

∏

jA×D
〈πA, g〈jAπA, πD〉〉

∗γ
ε〈πA,g〈jAπA,πD〉〉∗γ

−−−−−−−−−−−−−→ 〈πA, g〈jAπA, πD〉〉
∗γ

where the equality at the third bullet holds because the commutative square:

A×D

〈πA,g〈jAπA,πD〉〉

��

jA×D // (A×D) + (B ×D)

θ−1〈πA+B,g〉φ

��
A× C

jA×C // (A× C) + (B × C)

is a pullback.

Viceversa, whenever (h, j∗A×Dφ
∗δ = 〈jAπA, πD〉

∗δ
ψ
−→ 〈πA, h〉

∗γ) is an arrow:

(A,D, 〈jAπA, πD〉
∗δ)→ (A,C, γ)

we define ♭Sum(h, ψ) to be the couple ([h, c!]φ−1, (φ−1)∗ψ♭) which is actually an arrow
(A+B,D, δ)→ (A+B,C, (θ−1)∗

∏

jA×C
γ). Observe indeed that ψ♭ is an arrow φ∗δ →

∏

jA×S
〈πA, h〉

∗γ, hence (φ−1)∗ψ♭ is an arrow:

δ → φ−1
∏

jA×D

〈πA, h〉
∗γ = 〈πA+B , [h, c!]φ

−1〉∗(θ−1)∗
∏

jA×C

γ

where the last equality holds because the commutative square:

A×D

〈πA,h〉

��

jA×D // (A×D) + (B ×D)

θ−1〈πA+B ,[h,c!]φ
−1〉φ

��
A× C

jA×C // (A× C) + (B × C)

is a pullback. It is the case that:

♯Sum♭Sum(h, ψ) = ♯Sum([h, c!]φ−1, (φ−1)∗ψ♭)

= ([h, c!]φ−1〈jAπA, πD〉, ε〈πA,[h,c!]φ−1〈jAπA,πD〉〉∗γ〈jAπA, πD〉
∗(φ−1)∗ψ♭)

= (h, ε〈πA,h〉∗γ(j
∗
A×Dψ

♭))

[Proposition A.7] = (h, ψ)

hence
∏

Sum

jA
is left-weakly right adjoint to the jA-reindexing w.r.t. Sum(p) and we are

done. The fact that BCC is satisfied follows precisely as it follows in 3).
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Finally, let us verify that 2.a) and 2.b) hold.

2.a) The existence of (weak) products follow by (a weak version of) [13, Prop. 9.2.1].
The tricky point is to use the existence of (weak) left adjoints and fibred (weak) coprod-
ucts to define (weak) coproducts in the total category Sum(p).

Let (I, A, α) and (Y,B, β) be two objects of the total category Sum(p). We define

(I, A, α) + (Y,B, β) :=

Sum
∐

jI

(I, A, α) +

Sum
∐

jY

(Y,B, β)

i.e.
(I, A, α) + (Y,B, β) = (I + Y,A+B,ω∗(

∐

jI×A

(α) +
∐

jY ×B

(β)))

where ω is the canonical isomorphism (I + Y ) × (A + B) ∼= (I × A) + (I × B) + (Y ×
A) + (Y ×B), together with injections:

(jI , jAπA, jαηα) and (jY , jBπB, jβηβ).

It is direct to verify that this is actually a weak coproduct.

2.b) This is just Proposition 5.2 and Proposition 5.3.

We state the dual version of Theorem 5.10, which follows by Lemma 1.7, Proposition
2.4 and Theorem 5.10.

Theorem 5.11. If p : E −→ B is an extendable fibration, then Prod(p) is an extendable
fibration (with simple products). Moreover, Prod(p) satisfies the following:

2.a) the total category Prod(p) has both weak finite products and coproducts;

2.b) if p has fibred finite coproducts, then Prod(p) has fibred finite coproducts and, if
p has fibred finite products and right adjoints to the cartesian liftings along the
injections, then Prod(p) has fibred finite products.

Observe that Theorem 5.10 and Theorem 5.11 show that not only extendable fibra-
tions are preserved by the simple product and coproduct completions, but that these
constructions extend the structures in the fibres to the whole total category.

Theorem 5.12. Let B be a cartesian closed category and let p : E −→ B be a fibration
with simple products. Then Sum(p) : Sum(p) −→ B is a fibration with simple products
and simple coproducts, i.e. the simple coproduct completion preserves the existence of
simple product.

Proof. (Hofstra [11])

Part I. Existence of right adjoints to weakenings. Let A1, A2 be objects of B, and let

A1 ×A2

πA1−−→ A1 be the first projection. Let:

Sum(p)A1×A2

∏
Sum

πA1−−−−→ Sum(p)A1
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be defined by:

(A1 ×A2, B, α) 7→ (A1, B
A2 ,

∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗
α)

where πi are the projections from A1 × A2 × BA2 and A2 × BA2
ev
−→ B is the eval-

uation map. The intuition is that the right adjoints act by mapping a formula ∃b :
Bα(a1, a2, b) 7→ ∃f : BA2∀a2 : A2α(a1, a2, f(a2)). Let us verify that

∏

Sum

πA1
is right

adjoint to the πA1 -weakening w.r.t. Sum(p).
Let (A1, C, γ) and (A1×A2, B, α) be objects of Sum(p)A1 and Sum(p)A1×A2 respec-

tively. We are left to verify that between the homsets:

Sum(p)A1×A2

(

(A1 ×A2, C, (πA1 × 1C)
∗(γ)), (A1 ×A2, B, α)

)

and:
Sum(p)A1

(

(A1, C, γ), (A1, B
A2 ,

∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗
α
)

there is a natural bijection. An arrow of the former consists of: an arrow A1×A2×C
g
−→ B

together with an arrow (πA1 × 1C)
∗(γ)

ϕ
−→ 〈πA1×A2 , g〉

∗
α, that is:

an arrow A1 ×A2 × C
g
−→ B

together with an arrow γ
φ
−→

∏

πA1×1C

〈πA1×A2 , g〉
∗
α (2)

while an arrow of the latter consists of:

an arrow A1 × C
h
−→ BA2

together with an arrow γ
ψ
−→ 〈πA1 , h〉

∗
∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗α (3)

so that we are left to prove that there is a natural bijection between couples as in (2) and
couples as in (3). Let π′

i be the three projections from A2×A1×B
A2 , πi the projections

from A1 × A2 × C and π′
i the projections from A2 × A1 × C. Moreover let us assume

that there is a couple (g, φ) as in (2). We define the arrow A1 × C
h
−→ BA2 to be the

exponential transpose of g〈π′
2, π

′
1, π

′
3〉, hence it holds that ev(1A2 × h) = g〈π′

2, π
′
1, π

′
3〉.

We are going to prove that this choice of h is such that:

∏

πA1×1C

〈πA1×A2 , g〉
∗
= 〈πA1 , h〉

∗
∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗

(4)

allowing to conclude that (h, ψ := φ) is a couple as in (3). Moreover observe that, from
a given couple (h, ψ) satisfying (3), one can always recover the corresponding arrow g by
anti-transposing h and precomposing by 〈π2, π1, π3〉 (as 〈π

′
2, π

′
1, π

′
3〉 is an isomorphism

whose inverse is indeed 〈π2, π1, π3〉). Therefore (4) would also imply that (g, φ := ψ) is
a couple as in (2), concluding our adjointness proof. Hence we are left to prove that (4)
holds.
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Let x be the arrow A1 × A2 × C
(1A2×h)〈π2,π1,π3〉
−−−−−−−−−−−−→ A2 × B

A2 , and observe that the
equality:

〈π1, π2, ev〈π2, π3〉〉〈π1, x〉 = 〈π1, π2, g〉 = 〈πA1×A2 , g〉

holds. Hence it is the case that 〈πA1×A2 , g〉
∗
= 〈π1, x〉

∗
〈π1, π2, ev〈π2, π3〉〉

∗
and therefore

(4) follows if we prove that
∏

πA1×1C
〈π1, x〉

∗
= 〈πA1 , h〉

∗ ∏

〈π1,π3〉
holds. By BCC for

∏

it is enough to prove that the right-hand square of the commutative diagram:

A2 ×A1 × C

〈π′
1,π

′
2,h〈π

′
1,π

′
3〉〉

��

〈π′
2,π

′
1,π

′
3〉 // A1 ×A2 × C

πA1×1C=〈π1,π3〉 //

〈π1,x〉

��

A1 × C

〈πA1 ,h〉

��
A2 ×A1 ×B

A2

〈π′
2,π

′
1,π

′
3〉

// A1 ×A2 ×B
A2

〈π1,π3〉
// A1 ×B

A2

is a pullback. This is the case: the outer square is a pullback, as its horizontal arrows
are the projections A2 × A1 × C → A1 × C and A2 × A1 × B

A2 → A1 × B
A2 and as

〈π′
1, π

′
2, h〈π

′
1, π

′
3〉〉 = 1A2 × 〈πA1 , h〉, and moreover the horizontal arrows of the left-hand

square are isos, therefore the right-hand square is indeed a pullback as well.

Part II. BCC. Let us consider a pullback of a projection along a given arrow f , which
is of the form:

D × C
πD //

f×1C

��

D

f

��
A× C

πA

// A.

and let us verify that the corresponding equality f∗
∏

Sum

πA
=

∏

Sum

πD
(f × 1C)

∗ holds.
Whenever (A × C,B, β) is an object of Sum(p)A×C we get (by applying the left and
right member of the wannabe equality respectively) the elements:

(D,BC , (f × 1BC )∗
∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗β)

and
(D,BC ,

∏

〈π1,π3〉

〈π1, π2, ev〈π2, π3〉〉
∗(f × 1C×B)

∗β)

of Sum(p)D, being πi the projections from A × C × BC and πi the projections from
D × C ×BC . We are left to prove them to be equal. By BCC for

∏

it is the case that
(f × 1BC )

∗ ∏

〈π1,π3〉
=

∏

〈π1,π3〉
(f × 1C × 1BC )

∗
, hence we are left to observe that:

(f × 1C × 1BC )
∗
〈π1, π2, ev〈π2, π3〉〉

∗
= 〈π1, π2, ev〈π2, π3〉〉

∗
(f × 1C×B)

∗

which holds because the class of arrows:

X × C ×BC
〈π1,π2,ev〈π2,π3〉〉
−−−−−−−−−−−→ X × C ×B

for X in B is a natural transformation (−)× C ×BC → (−)× (C ×B).
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We show that under our hypotheses the Dialectica monad Dial(−) preserves the
existence of fibred weak finite products and coproducts of a given fibration. The re-
indexing along injections of the resulting fibration Dial(p) happen to have weakly left
and right adjoints as well. Moreover, the total categoryDial(p) has finite (weak) products
and coproducts.

Theorem 5.13. Let B be a distributive category and let p : E −→ B be an extendable
fibration. Then:

Dial(p) : Dial(p) −→ B

is an extendable Gödel fibration and the total category Dial(p) has both weak finite prod-
ucts and coproducts.

Moreover, if p has fibred finite products and right adjoints to the cartesian liftings
along the injections, then the fibration Dial(p) has fibred finite products and, hence, its
total category Dial(p) has finite products.

Proof. It follows by Theorem 5.10 and Theorem 5.11. In detail, the first part of the
statement follows by 2.a) of Theorem 5.10 and 2.a) of Theorem 5.11, and the second
part of the statement follows by the second part of 2.b) of Theorem 5.11 and the first
part of 2.b) of Theorem 5.10.

Combining Theorem 5.10 together with Theorem 4.7 and Theorem 5.12, the following
result follows:

Corollary 5.14. Let B be a cartesian closed category and let p : E −→ B be an extendable
fibration. Then:

Dial(p) : Dial(p) −→ B

is an extendable Gödel fibration (hence in particular an existential and universal fibra-
tion) and the total category Dial(p) has both weak finite products and coproducts.

Moreover, if p has fibred finite products and right adjoints to the cartesian liftings
along the injections, then the fibration Dial(p) has fibred finite products and, hence, its
total category Dial(p) has finite products.

We conclude this section by comparing our results with the literature. Hyland [12] and
Biering [2] described how to go beyond simple tensor logic, providing sufficient conditions
to ensure the existence of finite products in the Dialectica category associated to a cloven
fibration. Hyland’s formulation for preordered fibrations identified the following key
requirements:

• the base category of a fibration p : E −→ B has to be cartesian closed, with finite
coproducts;

• p has to be fibred cartesian closed;

• the injections A
jA
−→ A + B and B

jB
−−→ A + B have to induce an equivalence

EA × EB ∼= EA+B, natural in A and B, and also E0
∼= 1.

Under these hypotheses, Hyland proved that for Dial(p) the fibre Dial(p)1, has finite
products.

Biering has also shown that the Dialectica category Dial(p) which coincides with the
fibred category Dial(p)1 of the fibration Dial(p) used in [11] and here has products.
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Proposition 5.15 (Prop. 6 in [2]). Let p : E −→ B be a cloven fibration.

• Suppose B has finite, distributive products and coproducts, and that the injections

A
jA
−→ A + B and B

jB
−−→ A + B induce an equivalence µ := EA × EB ∼= EA+B,

natural in A and B, then Dial(p) has binary products.

• Suppose that E0
∼= 1, then Dial(p) has a terminal object.

Our goal is clearly similar, we want to know when Dial(p) has (weak) products and
(weak) coproducts, but our perspective is different. Since we take advantage of Hofstra’s
decomposition, which exploits the duality of product and coproduct completions, the
hypotheses we assume are always easily dualized. We also emphasize the naturality of
asking for the existence of adjoints along the re-indexing by some maps, instead of the
equivalence between the fibres they introduce. In the literature one can find several
properties of fibrations which depend on the existence of particular adjoints.

In the following proposition we formally compare our assumptions with those intro-
duced previously.

Proposition 5.16. Let p : E −→ B be a fibration satisfying the conditions of 5.15. If
p has fibred finite products, then p has right adjoints to the re-indexing functors along
injections. Similarly, if p has fibred coproducts, then p has left adjoints to the re-indexing
functors along injections.

Proof. If a fibration p : E −→ B has finite finite products, and it satisfies the hypothesis
of Proposition 5.15, for every A and B, we can define a functor EA −→ EA+B as

EA
〈idEA

,⊤〉
// EA × EB

µ // EA+B

where EA
⊤
−→ EB is the functor which assigns to every object of the fibre EA the terminal

object of EB. We denote the composition µ〈idEA ,⊤〉 by
∏

jA
. Now we have that

EA+B(α,
∏

jA

(β)) ∼= EA × EB(µ
−1(α), 〈idEA ,⊤〉(β)) = EA × EB(〈j

∗
A(α), j

∗
B(β)〉, 〈β,⊤〉)

and the last one is isomorphic to EA(j
∗
A(α), β).

6 Conclusion

Our results clarify the original Dialectica construction from both a categorical and logical
perspective, and they contribute to a deeper understanding of the construction.

Our first main result Theorem 4.7, provides an internal characterization of fibrations
which are instances of the Dialectica construction, highlighting the key features a fi-
bration should satisfy, namely it must be a Gödel fibration, to be an instance of the
Dialectica construction.

Our presentation in terms of Gödel fibrations underlines a double nature of Dialectica
fibrations: they satisfy principles which are typical of classical logic, such as the exis-
tence of a prenex normal form presentation for formulae, but they also satisfy principles
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normally associated to intuitionistic logic. For example, they satisfy the existence of
terms witnessing a proof: for every proof of α ⊢ ∃xβ(x) where α is quantifier-free, we
have a proof of α ⊢ β(t) for some term t.

We have proved that the Dialectica construction proposed by Hofstra [11] preserves
the properties of extendable fibrations, showing that the Dialectica construction has a
symmetric behaviour with respect to weak structures, but it is asymmetric with the
strict ones.

Moreover, we have generalized the results of de Paiva [7], Hyland [12] and Biering [2]
to this general construction, and we have shown, in addition, that assuming coproducts
in the starting extendable fibration, the weak coproducts in the corresponding Dialectica
category are also associative. This implies that the weak coproducts are almost as good
as real coproducts, as far as logical properties are considered.

Dialectica-like constructions are pervasive in several areas of mathematics and com-
puter science, and we briefly describe some future work, based on our previous analysis.
We wonder if the decomposition introduced by Hofstra can be extended or modified
to provide similar results for cousins of the Dialectica construction. In particular, we
believe that this decomposition, combined with the results presented in [24], could be
generalized to the context of dependent type theory.

There are two fibrations which seem to share common features with the Dialectica
construction. In particular, we would like to investigate and compare the fibrations aris-
ing from work by Abramsky and Väänänen [1] on the Hodges semantics for independence-
friendly logic and the Dialectica tripos, which is a model of separation logic [3].

Finally, the strong constructive features of Dialectica fibrations we have shown sug-
gest that these kinds of fibrations could lead to interesting applications in constructive
foundations for mathematics and proof theory. Recall that Maietti [18] showed that the
unique choice rule, and hence the choice rule, are not valid in either Coquand’s Calculus
of Constructions nor in its predicative version implemented in the intensional level of
the Minimalist Foundation. This means that in these theories the extraction of compu-
tational witnesses from existential statements must be performed in a more expressive
proofs-as-programs theory. However, given the preservation of the structures together
with the validity of a form of choice in the internal language of the Dialectica fibration
we provided, we may be able to use the Dialectica monad to extend constructive theories
to more expressive systems, in which the extraction of computational witnesses from
existential statements is allowed. With this result in mind, understanding when the Di-
alectica construction preserves the logical implication is fundamental, since this would
be required for extending the theory preserving all the logical constructors.
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A Left-weak and right-weak adjunctions

We recall that the notions of right-weak and left-weak adjunction appear in a similar
context in [19].

Definition A.1. Let C and D be functors and let F : C ←− D and G : C −→ D be
functors. We say that the pair (F,G) is a right-weak adjunction of the categories C

and D, and we indicate this as F ⊣̂ G, if there is a natural transformation:

C(F−,−)
(−)♭

−−−→ D(−, G−)

together with a choice of a section (−)♯ of every (D,C)-component of (−)♭, being C an
object of C and D an object of D. We also say that F is right-weakly left adjoint to
G and that G is right-weakly right adjoint to F .

Definition A.2. Let C and D be functors and let F : C ←− D and G : C −→ D be
functors. We say that the pair (F,G) is a left-weak adjunction of the categories C
and D, and we indicate this as F ⊣̌ G, if there is a natural transformation:

C(F−,−)
(−)♯

←−−− D(−, G−)

together with a choice of a section (−)♭ of every (D,C)-component of (−)♯, being C an
object of C and D an object of D. We also say that F is left-weakly left adjoint to G
and that G is left-weakly right adjoint to F .

Part I. Properties of right-weak adjunctions. Let (F : D −→ C) ⊣̂ (G : C −→ D) be a
right-weak adjunction of the categories C and D (see Definition A.1). Let D be an object

of D and let D
ηD
−−→ GFD be the arrow (FD

1FD−−−→ FD)♭. Then the following results
hold:
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Proposition A.3 (Unit of F ⊣̂ G). The class of the arrows ηD, where D is an object

of D, is a natural transformation 1D
η
−→ GF , which is called unit of the right-weak

adjunction.

Proof. Whenever D
f
−→ D′ is an arrow of D, the equality (GFf)ηD = ηD′f follows by

the commutativity of the diagram:

C(FD′, FD′)

(−)♭

��

(−)(Ff) // C(FD,FD′)

(−)♭

��

C(FD,FD)
(Ff)(−)oo

(−)♭

��
D(D′, GFD′)

(−)(f) // D(D,GFD′) D(D,GFD)
(GFf)(−)oo

applied to the arrows 1FD′ a 1FD.

Proposition A.4. Let us consider an arrow D
g
−→ GC of D. Then the equality:

G(g♯)ηD = g

holds.

Proof. The equality follows by the commutativity of the diagram:

C(FD,C)

(−)♭

��

C(FD,FD)
(g♯)(−)oo

(−)♭

��
D(D,GC) D(D,GFD)

(G(g♯))(−)oo

applied to the arrow 1FD and since (g♯)♭ = g.

Proposition A.5. The functor G preserves weak limits.

Proof. Let T be a functor J → C and let C
γ
−→ T be a J -indexed class of arrows in

C exhibiting C as a weak limit of T in C. Whenever D
δ
−→ GT is a J -indexed class of

arrows in D, it is the case that:

(FD
δ♯

−→ T ) := {FD
δ♯J−→ TJ}J : J

is a J -indexed class of arrows in C. Hence there is an arrow FD
φ
−→ C such that the

J -indexed class of triangles:

FD
δ♯ //

φ

��

T

C

γ

==④④④④④④④④
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of C commutes component-wise. Therefore, by naturality of (−)♭ and being the com-
ponents of (−)♯ sections of the ones of (−)♭, it is the case that the J -indexed class of
triangles:

D
δ //

φ♭

��

GT

GC

Gγ

<<②②②②②②②②

of D commutes component-wise. We conclude that the J -indexed family Gγ of arrows
of D exhibits GC as a weak limit of GT in D.

Part II. Properties of left-weak adjunctions. Analogously, let (F : D −→ C) ⊣̌ (G : C −→
D) be a left-weak adjunction of the categories C and D (see Definition A.2). Let C be

an object of C and let FGC
εC−−→ C be the arrow (GC

1GC−−−→ GC)♯. Then the following
analogous results hold:

Proposition A.6 (Counit of F ⊣̌ G). The class of the arrows εC, where C is an object

of C, is a natural transformation FG
ε
−→ 1C, which is called counit of the left-weak

adjunction.

Proof. Whenever C
g
−→ C′ is an arrow of C, the equality εC′(FGg) = gεC follows by the

commutativity of the diagram:

C(FGC,C)
(g)(−) // C(FGC,C′) C(FGC′, C′)

(−)(FGg)oo

D(GC,GC)

(−)♯
OO

(Gg)(−) // D(GC,GC′)

(−)♯
OO

D(GC′, GC′)

(−)♯
OO

(−)(Gg)oo

applied to the arrows 1GC a 1GC′ .

Proposition A.7. Let us consider an arrow FD
f
−→ C of D. Then the equality:

εCF (f
♭) = f

holds.

Proof. The equality follows by the commutativity of the diagram:

C(FD,C) C(FGC,C)
(−)(F (f♭))oo

D(D,GC)

(−)♯

OO

D(GC,GC)

(−)♯

OO

(−)(f♭)oo

applied to the arrow 1GC and since (f ♭)♯ = f .

Proposition A.8. The functor F preserves weak colimits.
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Proof. Let T be a functor J → D and let T
γ
−→ D be a J -indexed class of arrows in D

exhibiting D as a weak colimit of T in D. Whenever FT
δ
−→ C is a J -indexed class of

arrows in C, it is the case that:

(T
δ♭

−→ GC) := {TJ
δ♭J−→ GC}J : J

is a J -indexed class of arrows in D. Hence there is an arrow D
φ
−→ GC such that the

J -indexed class of triangles:

T
γ //

δ♭ !!❈
❈❈

❈❈
❈❈

❈ D

φ

��
GC

of D commutes component-wise. Therefore, by naturality of (−)♯ and being the com-
ponents of (−)♭ sections of the ones of (−)♯, it is the case that the J -indexed class of
triangles:

FT
Fγ //

δ ""❊
❊❊

❊❊
❊❊

❊❊
FD

φ♯

��
C

of C commutes component-wise. We conclude that the J -indexed family Fγ of arrows
of C exhibits FD as a weak colimit of FT in C.

Even though ordinary left adjoints preserve (weak) colimits and ordinary right ad-
joints preserve (weak) limits, the left-weak adjunctions and the right-weak adjunctions
do not necessarily verify both these two properties. It is the case that left-weak left
adjoints preserve weak colimits and that right-weak right adjoints preserve weak limits
(see Proposition A.5 and Proposition A.8), but a priori we cannot say anything about
left-weak right adjoint and right weak left adjoints.

However, as our main aim is to work with a weakened notion of adjunction, we do
not deviate from this principle if we simply require left-weak right adjoints to preserve
at least weak finite products and right-weak left adjoints to preserve at least weak finite
coproducts: these properties are verified by ordinary left and right adjoints.
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