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Abstract. In an unpublished note, Reddy introduced an extended intuitionistic
linear calculus, called LLMS (for Linear Logic Model of State), to model state
manipulation via the notions of sequential composition and ‘regenerative values’.
His calculus introduces the connective “before” ✄ and an associated modality
†, for the storage of objects sequentially reusable. Meanwhile independently de
Paiva introduced a (collection of) dialectica categorical models for (classical and
intuitionistic) Linear Logic, the categories Dial2Set. These categories contain,
apart from the structure needed to model linear logic, an extra tensor product
functor ⊙ and a comonad structure corresponding to a modality related to this
tensor.
It is surprising that these works arising from completely different motivations
can be related in a meaningful way. But in this paper, following our joint work
with Corrêa and Haeusler, we first adapt Reddy’s system LLMS providing it with a
commutative version of the connective “before”, denoted by⊙, and an associated
modality and construct a dialectica category on Sets, which we show is a sound
model for the modified system LLMSc. Moreover, following the work of Tucker,
we provide another variant of the Dialectica categories with a non-commutative
tensor and associated modality, which models soundly LLMS itself. We conclude
with some speculation on future applications.

Keywords Intuitionistic Linear Logic, Sequentiality, Models of State, Proof Theory,
Categorical Models.

Preamble

This paper is heavily based on “A dialectica model of state” byMarcelo da Silva Corrêa,
E. Hermann Haeusler and myself, presented by Marcelo (then Hermann’s PhD student)
at CATS: Computing, the Australian Theory Symposium, in January 1996 [5]. The
paper has never been published in a journal, it only exists in the informal proceedings
of that conference, so it is hard to find and hard to cite. But work on modelling state
manipulation using linear logic ideas is still flourishing. Mostly via the connection to
game semantics and the work of G. McCusker, P. O’Hearn and U. Reddy himself, many
ideas are still being being debated and improved upon. Thus the work on linear logic
model of state seems to me an ideal contribution to this tribute to E. Hermann Haeusler.
⋆ I would like to thank Marcelo da Silva Corrêa not only for the work we did together many
years ago, but also for keeping the files that allowed me to produce this version to celebrate E.
Hermann Haeusler’s birthday.
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It is a real pleasure for me to acknowledge the extent of my collaboration, over the
years, with Hermann. Through the ups and downs of the funding situations in Brazil,
England and the United States of America, we havemanaged to work together in several
projects, some more official, some more personal, all, always, a lot of fun. Hermann
has always been extremely generous with his time and that of his students and through
him I have had the privilege of working with many young talented people. Celebrating
Hermann’s birthday seems to me the best way of bringing the discussion on imperative
notions of state and linear logic back into focus. Happy Birthday Hermann!

1 Introduction

The concept of state-manipulation plays an important role in computation. There are
many attempts to formalise this concept especially using type systems derived from
Girard’s Linear Logic [9, 11]. Some aspects of state-manipulation, like sequencing and
regenerative values, are captured in an interesting way by Reddy’s work on the typ-
ing system described in [11]. Reddy presents an extended intuitionistic linear calculus
for modelling state manipulation; his calculus LLMS (for Linear Logic Model of State)
adds two extra connectives to those of Intuitionistic Linear Logic: a sequencing binary
operator ✄, called “before”, and a “regenerative” storage operator †, a modality asso-
ciated with “before”, in a way that parallels the relationship between tensor and the
exponential !.

The connective “before” is motivated as the denotation of sequential composition
of components while the “regenerative” storage operator allows us to build sequentially
reusable storage objects. These two constructors are used to express dynamic values and
imperative programs within the framework of linear logic, while Girard’s “of course”
modality is used to express static values. The approach is shown to work by embbeding
a higher-order Algol-like language in the system LLMS.

Reddy’s intuitive idea is that the connective “before” captures the computational
feature of composition with possible one way (left to right) communication. Thus this
connective must be noncommutative. If one considers a variant of this connectivewhich
is commutative, one obtains an operator denoting non-ordered (or aleatory) combina-
tion of elements. Non-ordered combination does not mean here communication both
ways, but it can be said to represent concurrent execution without interaction or syn-
chronization. In this paper we first introduce a new connective ⊙ which is just the
commutative version of Reddy’s ✄ and we modify the system LLMS accordingly, to
provide a presentation of a system LLMSc, for commutative LLMS.

Reddy presents a specific categorical model for his calculus using a variant of co-
herent spaces and linear maps. However, considering the commutative version of the
connective “before”, related to interleaving as we suggest in [5], we end up with the
calculus LLMSc for which we had already a dialectica categorical model many years
before.

Dialectica models were introduced by de Paiva [6] as a model for the intuitionistic
fragment of Linear Logic, that arises from Gödel’s Dialectica Interpretation, hence the
name. Later, de Paiva introduced the categories GC [7, 8], a simplified kind of dialec-
tica model, which following a suggestion of Girard, model the whole of Linear Logic.
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The categories GC have been re-christened Dial2(Set). The categories Dial2(Set) have
exactly the extra structure (an extra tensor product and an extra modality, associated
with this tensor product) to model LLMSc. The extra tensor product, denoted here by⊙,
can be seen as representing an aleatory combination of elements. The extra (monoidal)
comonad can be seen as a commutative version of the “regenerative” storage operator.

We first (section 2) describe the proof system LLMSc, obtained by modifying LLMS
to make the connective “before” commutative. In the section 3, we describe the specific
dialectica G category (built over Sets) and show that it is a sound model for LLMSc.
Then we recap the work of Tucker [14] where a variation of the construction produces
a model of LLMS itself. Finally, we conclude pointing out some future work.

2 The system LLMSc

The presentation of the system of LLMSc follows strictly the presentation of LLMS [11],
which itself follows from Retoré’s work [13] on pomset logic.

The left context of a sequent in LLMSc has the following syntax :

Γ ::= ε|A|Γ0,Γ1|Γ0;Γ1

where ε (empty context) is interpreted as 1 and the contexts Γ0,Γ1 and Γ0;Γ1 are inter-
preted as Γ0⊗Γ1 and Γ0⊙Γ1, respectively. A context Γ, which does not contain any
occurrences of the connective “;”, is called an independent context.

A context Γ is characterized as a pomset(partially orderedmultiset) (|Γ|,≤Γ), where
|Γ| is the set of formula occurrences in Γ, and ≤Γ is a partial order on |Γ|. They are
defined inductively as follows:

|ε| = {}
|A| = {A} ≤A = {(A,A)}

|Γ1,Γ2| = |Γ1|+ |Γ2| ≤Γ1,Γ2 =≤Γ1 ∪ ≤Γ2
|Γ1;Γ2| = |Γ1|+ |Γ2| ≤Γ1;Γ2 =≤Γ1 ∪ ≤Γ2 ∪ (|Γ1|× |Γ2|)∪ (|Γ2|× |Γ1|)

The rules of LLMSc, are just those of LLMS [11], except that we use the symbol
⊙ instead of ✄. The fact that ⊙ is commutative, whereas ✄ is not, is “hidden” in the
definition of the contexts. The rules of LLMSc are presented in the Figure 1.

Figure 1 also works as a representation of the rules of LLMS, if we replace in the
definition of contexts the last rule by:

|Γ1;Γ2|= |Γ1|+ |Γ2| where≤Γ1;Γ2 =≤Γ1 ∪ ≤Γ2 ∪ (|Γ1|× |Γ2|))
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Structural Rule
Γ′ ⊢ A
Γ ⊢ A

Ser if |Γ|= |Γ′| and ≤Γ⊆≤Γ′

Identity Rules

A ⊢ A
Id Γ ⊢ A ∆[A] ⊢ B

∆[Γ] ⊢ B
Cut

Multiplicative Rules
Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

⊗R
Γ[A,B] ⊢C
Γ[A⊗B] ⊢C

⊗L
Γ ⊢ A ∆ ⊢ B
Γ;∆ ⊢ A⊙B

⊙R
Γ[A;B] ⊢C
Γ[A⊙B] ⊢C

⊙L

⊢ 11R
Γ[ε] ⊢C
Γ[1] ⊢C1L

Γ,A ⊢ B
Γ ⊢ A−◦B

−◦R
Γ ⊢ A ∆[B] ⊢C
∆[Γ,A−◦B] ⊢C

−◦L

Additive Rules

⊢ ⊤
⊤R

Γ ⊢ A Γ ⊢ B
Γ ⊢ A&B

&R Γ[A] ⊢C
Γ[A&B] ⊢C

1&L Γ[B] ⊢C
Γ[A&B] ⊢C

2&L

Modalities
Γ[ε] ⊢C
Γ[†A] ⊢C

†Weak Γ[A] ⊢C
Γ[†A] ⊢C

†Der Γ[†A;†A] ⊢C
Γ[†A] ⊢C

†Thread

Γ ⊢ A
Γ ⊢ †A

(if Γ is an independent context with only ! or † formulae)

Γ[†A] ⊢C
Γ[!A] ⊢C

!Ser Γ[!A, !A] ⊢C
Γ[!A] ⊢C

!Contr

Γ ⊢ A
Γ ⊢!A

(if Γ is an independent context with only ! formulae)

Figure 1: Proof system of LLMSc

2.1 Interplay between tensor structures
Next, we describe some inferences which are derived from the structural rule and which
show some interesting interplay between the connectives⊗ and ⊙.
Proposition 1. The following inferences are allowed by the Structural Rule (Ser).

(i)∆[(A,B);C] ⊢ D
∆[A,(B;C)] ⊢ D

(ii)∆[A;(B,C)] ⊢ D
∆[(A;B),C] ⊢ D

(iii)∆[A;B] ⊢C
∆[A,B] ⊢C

(iv)∆[(A,C);(B,D)] ⊢ E
∆[(A;B),(C;D)] ⊢ E
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Commutativity and associativity of the tensor products are also consequences of the
structural rule. The weak-distributivity properties

A⊗ (B⊙C)−◦ (A⊗B)⊙C
(A⊙B)⊗C−◦ A⊙ (B⊗C)

follow from the inferences (i) and (ii), respectively. The inferences (iii) and (iv) allow
us to prove that

A⊗B−◦ A⊙B
(A⊙B)⊗ (C⊙D)−◦ (A⊗C)⊙ (B⊗D)

Summing up and naming the transformations, the following are direct consequences
of the structural rule Ser:

ser : A⊗B→ A⊙B
wd1 : A⊗ (B⊙C)→ (A⊗B)⊙C
wd2 : (A⊙B)⊗C→ A⊙ (B⊗C)
int : (A⊙B)⊗ (C⊙D)→ (A⊙C)⊗ (B⊙D)

They all draw on the fact that we can impose the same order on formulae as we
can on contexts, by turning ⊗’s into commas, ⊙’s into semicolons and applying ≤ to
the resulting context. A formula on the left can then be transformed into the one on the
right if the order on the left formula is included in the order on the right formula.

2.2 Cut Elimination for LLMS

We can obtain a Gentzen’s style proof of the cut-elimination theorem for LLMSc.

Theorem 1 (Cut Elimination). If a sequent is provable in LLMSc, then it is provable
in LLMSc without an application of the cut rule.

This proof is probably similar to Reddy’s proof [11], but we consider as a measure
of the complexity, the rank as well as the degree of the last cut-formula, with the usual
definitions. Special attention must be payed to the cases involving †, for instance, the
case in which the †Thread is applied in the lower right sequent of a proof ending by a
cut rule is proved using the inferences (iii) and (iv). Corrêa’s proof can be found in the
technical report [4].

3 A Categorical Model for LLMSc
To characterize LLMSc categorically, we consider an instantiation G of the (symmetric
monoidal closed) categoriesDial2(Set), developed in [8]. As usual, the interpretation of
the formulae is given by objects of the category G and proofs of LLMSc are interpreted
by morphisms of G.

Recall that the partial-order with two elements 2, where one thinks of 0 as false and
1 as true, is closed as a poset. It has a tensor product (⊗) and an internal-hom (−◦) such
that a⊗ b ≤ c iff a ≤ b−◦c, where ⊗ is the usual conjunction ∧ and the internal-hom
linear is the usual Heyting implication→.
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Definition 1 (dialectica category G). The category G is described by:
• Objects are relations on Sets, that is maps U×X α

−→ 2, written as (U α
↼↽.− X).

• A morphism from (U α
↼↽.− X) to (V β

↼↽.− Y ) consists a pair of maps, f : U → V and
F : Y → X, such that the following condition is satisfied

α(u,Fy)≤ β( f u,y)

where ≤ is the usual order in 2.

Thus there is a morphism ( f ,F) fromα to β iff for all u inU and all y inY , if uαF(y)
then f (u)βy. We usually depict a morphism ( f ,F) in G as follows, to help remember
what happens in which coordinate:

U ←−−
α
−−.−−−−− X

f
|
|
|
↓

↑
|
|
|
F

V ←−−−−.−−
β
−−− Y

The next definition describes the (multiplicative and additive) structure of the cate-
gory G we are interested in.

Definition 2 (structure of G). Let A= (U α
↼↽.− X) and B= (V β

↼↽.−Y ) be objects of the
category G.
• The tensor bifunctor⊗ : G×G→ G is given by

A⊗B= (U ×V α⊗β
↼↽.− XV ×YU ),

where (u,v)α⊗β( f ,g) iff uα f (v) and vβg(u). Its unit is the object I = (1 ι
↼↽.− 1), where

ι is the identity relation on 1.
• The tensor bifunctor⊙ : G×G→ G is given by

A⊙B= (U×V α⊙β
↼↽.− X×Y ),

where (u,v)α⊙β(x,y) iff uαx and vβy. Its unit is the same object I above.
• The internal-hom bifunctor [−,−]G : G

op×G→ G is given by

[A,B]G = (VU ×XY βα
↼↽.−U×Y),

where ( f ,F)βα(u,y) iff uαx implies vβy. The relation βα is given by the composition

VU ×XY ×U×Y ⟨π3,π4,eval,eval⟩−→ U×Y ×V ×X ‘α×β′
−→ 2× 2 −◦−→ 2.

• The product bifunctor&: G×G→ G is given by

A&B= (U×V α&β
↼↽.− X+Y),
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where (u,v)α&β
(
x,0
y,1

)
iff either uαx or vβy. Its unit is the object T= (1 e

↼↽.− 0).

We could also describe coproducts (or additive disjunctions), a par connective and
the linear negation, but these will not play an important role in the following discussion.

Lemma 1 (G is a smcc).With the structure just described the categoryG is a symmetric
monoidal closed category.

The proof is easy, but worth doing on your own, to appreciate the naturalness of the
categorical constructions.

Lemma 2 (G natural transformations).For any A and B objects of G there are natural
morphisms:
(i) ser(A,B) : A⊗B→ A⊙B; 1
(ii) wd1(A,B,C) : A⊗ (B⊙C)→ (A⊗B)⊙C (called weak-distributivity 1)
(iii) wd2(A,B,C) : (A⊙B)⊗C→ A⊙ (B⊗C) (called weak-distributivity 2)
(iv int(A,B,C,D) : (A⊙B)⊗ (C⊙D)→ (A⊗C)⊙ (B⊗D).

Following the pattern of linear logic, modelling the modalities of LLMSc, is more
complicated than the tensors. Recall that the category Sets does have free (commutative)
monoid structures. There is an adjunction

F ⊣ U: Monc→ Sets

where Monc is the category of commutative monoids U is the forgetful functor and
the free functor F applied to a set X

F(X) = (X∗,eX ,mX)

consists of X∗ the set of finite sequences (up to permutation) of elements of X , eX : 1→
X∗ is the empty sequence and mX : X∗ ×X∗ → X∗ means concatenation of sequences.

We need to consider another, different, monad structure in Sets too. Consider the
monad (TU ,ηTU ,µTU ), where for a givenU in Sets, TU : Sets→ Sets is the endofunctor
which takes X .→ XU , Y .→ YU and if g : X → Y , f ∈ XU is taken to f ;g ∈ YU . Its unit
is given by the transpose of the projection, that is the constant map (ηTU )X : X →
XU and its multiplication (µTU )X : XU×U → XU , is simply precomposition with the
diagonal map onU .

We define two endofuctors on G to model the modalities of LLMSc.

Definition 3 († and G in G). Consider the following endofunctors on G:

1. The functor † on G given on objects by
†(U α

↼↽.− X) = (U †α
↼↽.− X∗) where the relation †(α) is defined by

u(†α)(x1, · · · ,xk) iff uαx1 and · · ·and uαxk

and † acts on maps as †( f ,F) = ( f ,F∗).
1 There is another natural morphism σA,B : (A⊙B)→ (A✷B)where ✷ is the functor correpond-
ing to the par connective, but it shall not concern us here.
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2. The functor G on G given by

G(U α
↼↽.− X) = (U Gα

↼↽.− XU)

where the relation Gα is given by u(Gα) f iff uα f (u). The functor G applied to a
map ( f ,F) : A→ B is ( f ,F(−) f ) : GA→ GB.

Formally the relation †α is given by the mapU×X∗ †α
−→ 2which is the composition

U×X∗
rU,X
−→ (U×X)∗ α∗

−→ 2∗ −→ 2

(the map rU,X : U ×X∗ → (U ×X)∗ takes a tuple ⟨u,x1, . . . ,xk⟩ .→ ⟨⟨u,x1⟩, . . . ,⟨u,xk⟩⟩
and 2∗ → 2 using the tensor product in 2) and the relation Gα is given by the composi-
tion

U×XU ⟨π1,eval⟩−→ U×X α
−→ 2

Lemma 3 (comonad structures for † and G). The functors † and G have natural
(monoidal) comonad structures (†,ε†,δ†) and (G,εG,δG), induced by the monad struc-
ture of ∗ and the monads TU , respectively.

– The counit (ε†)A : †A→ A is given by identity on U and the singleton map X (η∗)X→
X∗ and the comultiplication (δ†)A : †A→ †2A is given by identity on U and for-

getting brackets X∗∗ (µ∗)X→ X∗ in the second coordinate, as in the diagram

U ←−−
†α
−−.−−−−− X∗

idU
|
|
|
↓

↑
|
|
|
(η∗)X

U ←−−
α
−−.−−−−− X

U ←−−
†α
−−.−−−−− X∗

idU
|
|
|
↓

↑
|
|
|
(µ∗)X

U ←−−
†2α
−−.−−−−− X∗∗

– The counit (εG)A : GA→ A is given by identity on U and the natural constant map
(ηTU )X : X→XU in the second coordinate; the comultiplication (δG)A : GA→G2A
is given by identity on U and the restriction to the diagonal, (µTU )X : XU×U → XU,
in the second coordinate:

U ←−−
Gα
−−.−−−−− XU

idU
|
|
|
↓

↑
|
|
|
(ηTU )X

U ←−−
α
−−.−−−−− X

U ←−−
Gα
−−.−−−−− XU

idU
|
|
|
↓

↑
|
|
|
(µTU )X

U ←−−
G2α
−−.−−−−− XU×U
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Now there is a distributive law relating our comonads † and G. Then, by abstract
nonsense [2] we have that these comonads compose and that G lifts to the category of
coalgebras for †.

Lemma 4 (distributivity law). There is a distributivity law of comonadsΛA : G(†A)→
†(GA) given by

U ←−−
G(†α)
−−−.−−−−−− (X∗)U

idU
|
|
|
↓

↑
|
|
|
λX

U ←−−
†(Gα)
−−−.−−−−−− (XU)∗

where each component λX : (XU)∗ → (X∗)U of the natural transformation λ is given by
the exponential transpose of the following composition

(XU)∗ ×U
rXU ,U
−→ (XU ×U)∗

ev∗
−→ X∗

Definition 4 (definition of !). Consider the composite comonad (G;†) and call it !. Its
functor part acts on objects as !(U α

← X) = (U !α
← (X∗)U ) and on maps as !( f ,F) =

( f ,F∗(−) f ). We have (ε!)A : !A→ A and (δ!)A : !A→!!A as follows:

U ←−−
!α
−−.−−−−− (X∗)U

idU
|
|
|
↓

↑
|
|
|
ηX

U ←−−
α
−−.−−−−− X

U ←−−
!α
−−.−−−−− (X∗)U

idU
|
|
|
↓

↑
|
|
|
µX

U ←−−
!2α
−−.−−−−− (((X∗)U)∗)U

where ηX is given by X
(η∗)X→ X∗

(ηTU )X
→ (X∗)U and µX is given by the exponential trans-

pose of the composition (((X∗)U)∗)U×U ⟨ev,π⟩−→ ((X∗)U )∗×U λ×U
−→ (X∗∗)U×U ev

→X∗∗ (µ∗)X→
X∗.

As the name indicates it is this composite comonad that will play the role of the
modality ! in Linear Logic. Next we emphasize some properties which are used in the
proof of soundness of the model.

Proposition 2 (interplay of ! and †).We have the following facts
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1. There is a comonad morphism 2 κ : !→ †, such that κA : !A→ †A is given by

U ←−−
!α
−−.−−−−− (X∗)U

idU
|
|
|
↓

↑
|
|
|
βX

U ←−−
†α
−−.−−−−− X∗

where βX : X∗ → (X∗)U is given by (ηTU ) applied to the object X∗.
2. There is a natural morphism †A⊗ †B→ †(A⊗B) given by (idU×V ,(λ1,λ2)◦ r) as

the diagram shows

U×V ←−−
†(α)⊗ †(β)
−−−−−.−−−−−−−− (X∗)V × (Y∗)U

idU×V
|
|
|
↓

↑
|
|
|
(λ1,λ2)◦ r

U×V ←−−−
†(α⊗β)
−−−−.−−−−−−−− (XV ×YU)∗

where, intuitively, the map r : (XV ×YU )∗ → (XV )∗× (YU)∗ transforms a sequence
⟨ f1× g1 · · · fk × gk⟩ into pairs of sequences (⟨ f1 · · · fk⟩,⟨g1 · · ·gk⟩); and the maps
λ1 : (XV )∗ → (X∗)V and λ2 : (YU)∗ → (Y ∗)U are components of natural transfor-
mations which satisfies the conditions for a “distributive law of monads”

3. For any G-object A, !A has a comonoid structure (!A,dA,eA) with respect to
⊗ with eA : !A→ I and dA : !A→!A⊗!A as its counit and comultiplication, respec-
tively. There is a functor from G to Comon⊗G which takes A to (!A,dA,eA).

4. For any G-object A, †A has a comonoid structure (†A,d′A,e′A) with respect
to ⊙ with e′A : †A→ I and d′A : †A→ †A⊙ †A as its counit and comultiplication,
respectively. There is a functor R† : G→ Comon⊙G which takes A to (†A,d′A,e′A).
Moreover R† is right-adjoint to the forgetful functor U: Comon⊙G→ G.

Having assembled all the necessary pieces we can now put them together in the:
Theorem 2 (Soundness of G). The symmetric monoidal closed category G, with
bifunctors internal-hom [−,−]G ; tensor products⊗ and⊙; the additive conjunction&
and the comonads ! and †, is a model for LLMSc. Thus, each entailment Γ ⊢LLMSc A
corresponds to the existence of a morphism in G, ( f ,F) : [[Γ]]→ [[A]].

To prove the theorem, we have only to check that the rules of LLMSc are preserved
by the interpretation presented.

As we hinted before, the category has more structure than the necessary to model
LLMSc: for example we do have multiplicative and additive disjunctions in G, as well
as a linear negation.
2 This morphism is similar to Reddy’s Ser, but it is not a monomorphism in G.
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4 Back to LLMS

Two years after the work on LLMSc, I realized that the modelling using dialectica cate-
gories could be extended for non-commutative systems like LLMS. My doctoral student
then, Alexander Tucker, wrote a short note on his investigations of the non-commutative
dialectica model and published it in the ESSLLI Student Session proceedings [14]. But
Alex decide to stop working on his doctorate and hence this work was left untouched
for several years. We recall some of Tucker’s results.

Reddy first set out the criteria he believed necessary for a categorical model of
LLMS. He starts with a symmetric monoidal closed category (C,⊗, I,−◦) together with
an additional monoidal structure (✄, I) such that (⊗, I) is a sub-monoidal structure of
(✄, I). The last condition means that there is a natural monic ser : A⊗B→ A✄Bwhich
preserves the associated monoidal structure. He then adds two comonads associated to
the tensorial structures given by ⊗ and ✄.

Given such a set up, Reddy defined a LLMS-category as a symmetric monoidal
closed category, with products and co-products, together with the extra tensor product
✄ and two monoidal comonads, ! and † with the former being a sub-comonad of the
latter via a comonad monomorphism Ser : !→ †. So the intuitio is that † transforms ✄
tensors into ⊗ tensors and ! (as usual) transforms tensors into cartesian products. But
also !A must be a comonoid with respect to ⊗ and †A a comonoid with respect to ✄.
Then since ⊗ is a sub-monoidal structure of ✄, !A becomes a comonoid with respect
to ✄ via the monic ser. This comonoid must be a sub-comonoid of †A via the natural
monic Ser which must now be a morphism of comonoids as well.

This definition, generalized from the example of coherence spaces, needs to be taken
with a pinch of salt. Further work by Bechet, de Groote and Retoré [1] showed that the
two kinds of logical context, represented by the operations of ⊗ and ✄ need a more
sophisticated treatment.

The partial order over the contexts of the LLMS calculus are in fact a class of order
called series parallel orders or SP-orders. These are defined as the least class of partial
orders containing the single element order, and closed under disjoint union and ordinal
sum.

In Bechet et al [1] a set of rewrite rules is given which is a complete characterization
of the inclusion of one SP-order in another and so by extension corresponds exactly to
Reddy’s Ser rule. In fact, the non-trivial rewrite rules correspond precisely to the four
rules given above. Moreover, if we insist that both ⊗ and ✄ have identities which are
equal, that ⊗ is associative and commutative and that ✄ is associative and not commu-
tative, then the set of rewrite rules are all derivable from just the middle interchange
rule.

The natural transformation ser can be obtained from int by instantiating B and C
as I, wd1 can be obtained by instantiating B as I and wd2 by instantiating C as I. We
therefore need to exchange ser for int in the definition of an LLMS-category. With this
big difference in setting, we can re-state Reddy’s definition of a LLMS-category.

We relax Reddy’s requirements somewhat by neither insisting on monotonicity of
the natural transformations, nor dealing with the additive constructs. We also exchange
the natural transformation ser with a natural transformation int corresponding to the
middle interchange rule.
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Definition 5 (Tucker). Amodality-free LLMS-category is an smcc (C,⊗,−◦, I) together
with an additional monoidal structure (✄, I). The two structures are related via a
monoidal natural transformation: int : (A✄B)⊗ (C✄D)→ (A✄C)⊗ (B✄D).

An LLMS-category is then a modality-free LLMS-category along with two monoidal
comonads ! and † related by a comonad morphism Ser : !→ †. Also !A must be a co-
monoid with respect to (⊗, I), †A a comonoid with respect to (✄, I) and Ser a morphism
of comonoids.

With this new definition in tow we can provide a simple dialetica model for the
system LLMS itself, instead of its commutative version LLMSc. As before, our categor-
ical model of LLMS is based on a simple dialectica category over the category of sets,
but this time the objects are partial relations over a three valued poset, or maps into
{false,undefined, true}.

Definition 6 (dialectica category L). The category L is described by:
• Objects are partial relations on Sets, that is mapsU×X α

−→ 3, written as (U α
↼↽.− X).

• A morphism from (U α
↼↽.− X) to (V β

↼↽.− Y ) consists a pair of maps, f : U → V and
F : Y → X, such that the following condition is satisfied

α(u,Fy)≤ β( f u,y)

where ≤ is the usual order in 3.

With easy, suitable modifications of the work in the previous section, we can de-
scribe the structure of L.

Definition 7 (structure of L). Let A= (U α
↼↽.− X) and B= (V β

↼↽.−Y ) be objects of the
category L.
• The tensor bifunctor⊗ : G×G→ G given by

A⊗B= (U ×V α⊗β
↼↽.− XV ×YU ),

where (u,v)α⊗β( f ,g) iff uα f (v) and vβg(u) still has as its unit the object I = (1 ι
↼↽.−

1), where ι is the identity relation on 1.
• The internal-hom bifunctor [−,−]G : G

op×G→ G is still given by

[A,B]G = (VU ×XY βα
↼↽.−U×Y),

where ( f ,F)βα(u,y) iff uαx implies vβy. The relation βα is given by the composition

VU ×XY ×U×Y ⟨π3,π4,eval,eval⟩−→ U×Y ×V ×X ‘α×β′
−→ 3× 3 −◦−→ 3.

• There is a non-commutative tensor bifunctor✄ : G×G→ G given by

A✄B= (U×V α✄β
↼↽.− X×Y ),

where (u,v)α✄β(x,y) iff uαx land vβy, where land is the computer science lazy and.
This connective is non-commutative, since false land undefined is false, but undefined
land false is undefined. The unit of this tensor product is the same object I that we had
before.
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Using the same definitions we had before for comonads ! and †, except that now,
instead of commutative free monoids, we use simply free monoids, we can model the
system LLMS modalities and obtain.

Theorem 3 (Soundness of L). The symmetric monoidal closed category L, with
bifunctors internal-hom [−,−]L; tensor products ⊗ and ✄; and the comonads ! and †,
is a model for LLMS. Thus, each entailment Γ ⊢LLMS A corresponds to the existence of
a morphism in L, ( f ,F) : [[Γ]]→ [[A]].

5 Conclusions

The motivation for this work came from O’Hearn’s and Reddy’s use of Linear Logic to
deal with sequentiality in the semantics of Algol-like programming languages. Earlier
on we realised that we could use Reddy’s ideas to give a syntactical characterization
to some of the (somewhat mysterious) constructions of dialectica categorical models
Dial2(Set) for Classical Linear Logic. In particular it was interesting to find an intuitive
explanation for the comonad † in terms of the extra tensor product⊙.

Summing up the work so far, we adapted Reddy’s system LLMS providing it with
a commutative version of the connective “before” and an associated modality. A di-
alectica category G was constructed on Sets and shown to be a sound model of the
new system LLMSc. Then we went back to the drawing board, in the light of work of
Bechet, de Groote and Retoré and uncovered a dialectica model of LLMS itself.

Much work remains to be done. Firstly, going back to the original motivation, more
work is needed to relate the system LLMSc to O’Hearn’s and Reddy’s other work on
Algol-like languages [10, 12]. Secondly, from a logical pespective, we might want to
use this system with two modalities, as a blueprint for work on relating modalities in
general. Thirdly most of the recent work on sequentiality [3] uses games and polar-
ized linear logic. It would would be nice if we could find a mathematically significant
relationship between linear logic polarization and dialectica categories.
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