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Preface

This paper is dedicated to the memory of Professor Grigori Mints, to whom the first
author owes a huge debt. Not only an intellectual debt (most people working on
proof theory nowadays owe this one), not only a friendship one (there are plenty of
us who owe this), but also a mentoring (and a personal help when I needed it) debt.
Grisha would not be gratuitously conversational, you could say that his style was
‘tough love’: work hard, then he would talk to you. But when you needed him, he
was there for you. This work might not be, yet, at the stage that he would approve
of it, especially given all his work on Dynamic Topological Logic with Kremer and
others [17], which might be related to what we describe here. However, this is the
best that we can do in the time we have, so it will have to do.

The second author does owe Grigori an intellectual debt. While I never got
to meet him in person I do remember fondly reading his “A Short Introduction to
Intuitionistic Logic” [20]. His book gave me several realizations about intuitionistic
logic that I had previously lacked. It was his book that turned on the light, and I
thank him for that.

We would like to thank the anonymous reviewers and Jane Spurr for dealing with a last minute,

but heartfelt, submission to this volume.
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1 Motivation

Generally speaking, Temporal Logic is any system of rules and symbolism for repre-
senting, and reasoning about propositions qualified in terms of time. Temporal logic
is one of the most traditional kinds of modal logic, introduced by Arthur Prior in
the late 1950s, but it is also one of the most controversial kinds of modal logic, as
people have di�erent intuitions about time, how to represent it, and how to reason
about it.

There has been a large amount of work in Modal Logic in the last sixty years,
mainly in classical modal logic. We are mostly interested in constructive systems, not
classical ones. In particular we are interested in a constructive version of temporal
logic that satisfies some well-known and desirable proof-theoretical properties, but
that is also algebraically and category-theoretically well-behaved.

Prior’s ‘Time and Modality’ [24] introduced a propositional modal logic with two
temporal connectives (modal operators), F and P , corresponding to “sometime in
the Future" and “sometime in the Past". This propositional system has been called
tense logic to distinguish it from other temporal systems.

Ewald [10] produced a first version of an intuitionistically based temporal logic
system with not only operators for “sometime in the Future" and “sometime in the
Past", but also operators for “in all future times" and “for all past times". The
intuitive reading of these operators is very reasonable:

• P “It has at some past time been the case that”

• F “It will at some future time be the case that”

• H “It has always been the case in the past that”

• G “It will always be the case in the future that”

Ewald and most of the researchers that followed his path of constructivization of
tense logic, did so assuming a symmetry between past and future. This symmetry, as
well as the symmetry between universal and existential quantifiers, both in the past
and in the future, are somewhat at odds with intuitionistic reasoning. In particular
while an axiom like A æ GPA “What is, will always have been” makes sense in a
constructive way of thinking, the dual one A æ HFA paraphrased in the Stanford
Encyclopedia of Philosophy as “What is, has always been going to be” feels very
classical.

Constructivizing a classical system is alwys prone to proliferation of systems,
as is evident when considering the several versions of intuitionistic set theory, for
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Figure 1: Distributivity rules

example. In particular the basic constructive modal logic S4 (using Lewis’ original
naming convention) has two main variants.

The first version of an intuitionistic S4, originally presented by Dag Prawitz in
his Natural Deduction book [23] does not satisfy the distributivity of the possibility
operator 3 over the logical disjunction. Prawitz’s system satisfies neither the binary
distribution nor its nullary form, as given in Figure 1. We call this system CS4. This
system was investigated from a proof theoretical and categorical perspective in [5].

The second main version of an intuitionistic modal S4 does enforce these dis-
tributivities and it was thoroughly investigated in Simpson’s doctoral thesis [25].
This system is part of a framework for constructive modal logics, based on incorpo-
rating, as part of the syntax, the intended semantics of the modal logic, as possible
worlds. We call this system IS4.

Ewald’s tense logic system consists of a pair of Simpson-style S4 operators [25],
representing past and future over intuituionistic propositional logic. This is his-
torically inaccurate, as Simpson based his systems in Ewald’s, but it will serve to
make some of our main points clearer below. The system we describe in this note
is the tense logic system obtained by joining together two pairs of Prawitz-style S4
operators. So it satisfies some of Ewald’s rules, but not all.

Simpson remarks that intuitionistic or constructive modal logic is full of inter-
esting questions. As he says:

Although much work has been done in the field, there is as yet no con-
sensus on the correct viewpoint for considering intuitionistic modal logic.
In particular, there is no single semantic framework rivalling that of pos-
sible world semantics for classical modal logic. Indeed, there is not even
any general agreement on what the intuitionistic analogue of the basic
modal logic, K, is.

In an intuitionistic logic we do not expect perfect duality between quantifiers,
(’x.P (x) is not the same as ¬÷x.¬P (x)) or even between conjunction and disjunc-
tion (full De Morgan laws do not hold for intuitionistic propositional logic). So one
should not expect a perfect duality between intuitionistic possibility and necessity ei-
ther. But considerations from first principles do not seem to indicate clearly whether
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distributivity rules as the ones in Figure 1 should hold or not. Hence it seems sensi-
ble to develop di�erent kinds of systems in parallel, proving equivalences, whenever
possible. In this paper we develop the idea of tense logic in Prawitz’ style. We recall
some deductive systems for this tense logic and provide categorical semantics for it.

Much has been done recently in the proof theory of constructive modal logics us-
ing more informative sequent systems (e.g. hypersequents, labelled sequents, nested
sequents, tree-style sequents, etc..) In particular nested sequents have been used to
produce ‘modal cubes’ for the two variants of constructive modal logics described
above. See the pictures below from [2, 26].

Figure 2: Intuitionistic and Constructive Modal Cubes

Sequent calculi by themselves are not enough to provide us with Curry-Howard
correspondences and/or term assignments for these systems. However, using the
Prawitz S4 version of these modal systems we can easily produce a Curry-Howard
correspondence and a categorical model for the Prawitz-style intuitionistic tense
logic, our goal in this paper.

We start by recalling the system using axioms, plain sequent calculus and plain
natural deduction. In the next section we describe a term assignment based on
the dual calculus described in [12] and show some of its syntactic prooperties. The
next section introduces the categorical model (a cartesian closed category with two
intertwinned adjunctions) and show the usual soundness and completeness results.
Finally we discuss potential applications and limitations of our constructive tense
logic.



�, A „ A
Id

� „ B B, � „ C

�, � „ C
Cut �, ‹ „ A

‹L

�, A „ C �, B „ C

�, A ‚ B „ C
‚L

� „ A
� „ A ‚ B

‚R1
� „ B

� „ A ‚ B
‚R2

�, A „ C

�, A · B „ C
·L1

�, B „ C

�, A · B „ C
·L2

� „ A � „ B
� „ A · B

·R

� „ A �, B „ C

�, A æ B „ C
æL

�, A „ B

� „ A æ B
æR

Figure 3: Intuitionistic Propositional Calculus (LJ)

2 Tense Logic CS4-style

We build up to the constructive tense logic we are interested in TCS4 in progressive
steps. We start with the intuitionistic basis LJ, add the modalities to get the con-
structive modal S4 system, CS4, provide the dual context modification (to help with
the reuse of libraries, amongst other things), obtaining dual CS4, DCS4 and then
finally consider the two adjunctions to obtain the tense constructive system TCS4.

2.1 Intuitionistic Sequent Calculus

We start by recalling the basic sequent calculus for intuitionistic propositional logic,
Gentzen’s intuitionistic sequent calculus LJ. The syntax of formulas for LJ is defined
by the following grammar:

A ::= p |‹| A · A | A ‚ A | A æ B

The formula p is taken from a set of countably many propositional atoms. The
constant € could be added, but it is the negation of the the falsum constant ‹. The
initial inference rules, which just model propositional intuitionistic logic, are as in
Figure 3.

Sequents denoted � „ C consist of a multiset of formulas, (written as either �,
�, or a numbered version of either), and a formula C. The intuitive meaning is
that the conjunction of the formulas in � entails the formula C. So far this is our
intuitionistic basis.
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�, A „ B

�, @A „ B
@L

@� „ A
@�, � „ @A

@R

@�, A „ 3B

�, @�, 3A „ 3B
3L

� „ A
� „ 3A

3R

Figure 4: Constructive S4 modal rules (CS4)

2.2 Constructive modal S4

Next we recall the sequent calculus formalization of system CS4 as described in [5].

We recap the modality rules in Figure 4. These, in addition to the initial set of
inference rules, define the sequent calculus for CS4. In Figure 3, we write @� for the
sequence of boxed formulas @G1, @G2, . . . , @Gk where � is the set G1, G2, . . . , Gk.

Note that we do have right rules and left rules for introducing the new modal
operators @ (necessity) and 3 (posssibility), but these rules are not as symmetric
as the propositional ones. Most importantly, we have a local restriciton on the rule
that introduces the @ operator: We can only introduce @ in the conclusion, if all the
assumptions are already boxed. Also the rules for the 3 operator presuppose that
you have already defined @ operators. This system is indeed constructive, @ and
3 are independent logical operators and @A is not logically equivalent to ¬3¬A,
nor is 3A logically equivalent to ¬ @ ¬A. Note that the necessity only fragment is
well-behaved and closed, while to define the possibility operator you need a necessity
operator in place.

This system has a reasonably nice proof theory. Bierman and de Paiva [5] show
that it has a Hilbert-style presentation, a Natural Deduction presentation, as well as
a sequent calculus presentation and these presentations are provably equivalent, that
is, they prove the same theorems. The sequent calculus satisfies cut-elimination, an
old result from Ohnishi and Matsumoto [21], as well as a form of the subformula
property. The Natural Deduction formulation has a colourful history: one of its
distinct features is that it was described in Prawitz’ seminal book in Natural Deduc-
tion [23], hence it is sometimes called Prawitz’ S4 intuitionistic modal logic. Most
interestingly the system has both Kripke and categorical semantics, described re-
spectively in [1] and [5] as well as an independent mathematical semantics in terms
of simplicial sets, described by Goubault-Larrecq [14].



�; ÿ „ A

�; � „ @A
@I

�; � „ @A �, A; � „ B

�; � „ B
@E

�; � „ A

�; � „ 3A
3I

�; � „ 3A �; A „ 3B

�; � „ 3B
3E

Figure 5: The dual context modal calculus (DCS4)

2.3 The dual context modal S4 calculus

An equivalent (in terms of provability) but more type-theoretic system can be pro-
duced for the modal logic CS4. This is not so well-known, but this system can
be given a presentation in terms of a categorical adjunction, between two cartesian
closed categories, as we will show in the next section. This categorical presentation
has been described both in [5] and in [12], in the former, this is called the multi-

context formulation of CS4 and the rules are given in Figure 5. (We prefer to call
it the dual context sequent calculus.) Note that the rules are Natural Deduction
rules, as it should be clear from the fact that they are introduction and elimination
rules.

The main di�erence between the system CS4 and the dual context formulation of
CS4 is the fact that the context now has modal formulas and non-necessarily modal
ones, separated by a semi-colon as in �; �. The previously di�cult rule of @ intro-
duction now says that to introduce a necessity operator @ on a conclusion, we need
to have an empty context of non-modal assumptions (that is, all the assumptions
of this conclusion must be modal). This corresponds to the traditional idea that to
prove something is necessarily the case, all its assumptions have to be also necessary
(or it must have no assumptions whatsoever).

These rules have been shown by Benton [4] and Barber [3] to correspond to an
adjunction of the categories, in the case where the basis is Linear Logic and the
modalities correspond to the exponentials. Instead of Linear Logic, we deal with
constructive modal logic and the adjunction is between functors corresponding to
operators 3 „ @.

2.4 The tense CS4 calculus

Finally to get to the tense logic which is the main aim of this note, we need two
such adjunctions, but intertwined. This follows the pattern explained by Ewald [10].
Thus 3 is left-adjoint to ⌅ and ⌥ is left-adjoint to @, where we are writing ⌅ for the
operator we called past universal H before and @ for the future necessity operator
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G. The past existential P is 3 and the future existential is ⌥ or F .
A sequent calculus system for this constructive tense logic is given by the rules in

Figure 6. This can be transformed into Natural Deduction in the style of [5] as shown
in Figure 8. The problem is that the last two adjunction rules in Figure 6 (that relate
the two sets of modalities) are extremely badly-behaved proof-theoretically (no cut-
elimination and no subformula property even for cut-free proofs), as discussed in
page 35 of Benton’s full report [4]. In fact they are the reason for moving to a dual
context calculus, as explained in that paper and also in Barber’s work [3].

The dual context systems, as described in Barber and Benton’s work, are proved
equivalent to the system with a single modality operator, either ‘!’ or ‘@’. This is
because in Intuitionistic Linear Logic one is not usually interested in either why not?
‘?’ or ‘3’. (In Classical Linear Logic the possibility modality is defined by negation
of the necessity modality, so this extension is easier to make [22].) Given that our
main goal is to discuss categorical semantics, which we can do easily for the necessity
modalities, in this note we consider only two necessity-like modalities @ and ⌅.

We would like to have a natural deduction version of the tense calculus in dual
context style. A dual context-style presentation of a single necessity modality has
been presented in Figure 5. Now we need to add another necessity-like modality and
discuss their interaction. A preliminary attempt at such calculus is given in Figure
9.

This corresponds to an intuitionistic tense logic obtained by extending IPL with
two pairs of adjoint modalities (⌥, @) and (3,⌅), with no explicit relationship be-
tween the modalities of the same colour, namely, (⌥,⌅) and (3, @).

2.5 Axioms

Axiom sets for the system TCS4 are easier to provide. We need a set for the basic
system intuitionistic logic LJ, and any traditional set would do, plus the axioms
for modalities, as well as the rules modus ponens and necessitation for the two
necessity operators:

We have similar axioms to Ewald’s [10], except that the duality between necessity
and possibility is not strict (Ewald’s original axioms (7) and (7’) in page 171 of [10]
are not valid) and that the possibility modalities we deal with, do not distribute
over disjunction (Ewald’s axioms (4) and (4’) are not valid). Also note we do have
introspection and reflexivity valid, which correspond to Ewald’s extra axioms (12)
and (12’), as well as (13) and (13’).

We are interested in the term assignment system and its properties, as our aim
is to use these as type systems for innovative programming languages. So we needed
to provide the systematic work that shows basic properties of the type system TCS4



�, A „ B

�, @A „ B
@L

@� „ A
@�, � „ @A

@R

@�, A „ ⌥B

�, @�,⌥A „ ⌥B
⌥L

� „ A
� „ ⌥A

⌥R

�, A „ B

�,⌅A „ B
⌅L

⌅� „ A
⌅�, � „ ⌅A

⌅R

⌅�, A „ 3B

�,⌅�, 3A „ 3B
3L

� „ A
� „ 3A

3R

A „ @B
⌥A „ B

adj1L
⌥A „ B
A „ @B

adj1R

A „ ⌅B
3A „ B

adj2L
3A „ B
A „ ⌅B

adj2R

Figure 6: Tense S4 sequent rules (biCS4)

� „C X Y , � „C Z
�, X æ Y , � „C Z æC

l

�, X „C Y
� „C X æ Y æC

r

�; ÿ „L A
� „C G A Gr

� „C X Y , �; � „L A
�, X æ Y , �; � „L A æL

l

�; �, A „L B
�; � „L A ( B(L

r

�; � „L A �; �, B „L C
�; �, A ( B, � „L C (L

l

� „C X
�; ÿ „L F X Fr

�, X ; � „L A
�; F X , � „L A Fl

�; B, � „L A
�, G B; � „L A Gl

Figure 7: LNL sequent rules
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� „ @B
� „ B

@E
� „ @A1, . . . , � „ @Ak @ A1, . . . @ Ak „ B

� „ @B
@I

� „ A
� „ ⌥A

⌥I

� „ ⌅A
� „ A

⌅E
� „ ⌅A1, . . . , � „ ⌅Ak ⌅A1, . . .⌅Ak „ B

� „ ⌅B
⌅I

� „ A
� „ 3A

3I

� „ @A1 . . . � „ @Ak � „ ⌥B @ A1 . . . @ Ak, B „ ⌥C

� „ ⌥C
⌥E

� „ ⌅A1 . . . � „ ⌅Ak � „ 3B ⌅A1 . . .⌅Ak, B „ 3C

� „ 3C
3E

Figure 8: Tense S4 rules ND first version (NDCS4)

�1; ÿ „ A

�1; � „ @A
@I

�1; � „ @A �1; A; � „ B

�1; � „ B
@E

� „ A
� „ ⌥A

⌥I
�1; � „ ⌥A �1; A „ ⌥B

�1; � „ ⌥B
⌥E

�; ÿ „ A

�; ÿ „ ⌅A
⌅I

�1; � „ ⌅A �1; A; � „ B

�1; � „ B
⌅E

� „ A
� „ 3A

3I
�1; � „ 3A �1; A „ 3B

�1; � „ 3B
3E

Figure 9: biS4 rules, dual context version (ND2CS4)



�1; �2, A; � „ A
@Id �1, A; �2; � „ A

⌅Id

�1; �2; ÿ „ A

�1; �2; � „ @A
@I

�1; �2; � „ @A �1; �2, A; � „ B

�1; �2; � „ B
@E

�1; �2; � „ A

�1; �2; � „ ⌥A
⌥I

�1; �2; � „ ⌥A �1; �2; A „ ⌥B

�1; �2; � „ ⌥B
⌥E

�1; �2; ÿ „ A

�1; �2; � „ ⌅A
⌅I

�1; �2; � „ ⌅A �1, A; �2; � „ B

�1; �2; � „ B
⌅E

�1; �2; � „ A

�1; �2; � „ 3A
3I

�1; �2; � „ ⌥A �1; �2; A „ ⌥B

�1; �2; � „ ⌥B
⌥E

Figure 10: Dual context 2CS4 calculus (TCS4)

A
@A

@Nec
A
⌅A

⌅Nec
A æ B A

B
MP

Figure 11: Axiomatic Rules

we are interested in, this is what we do in the next section.

3 Term Assignment

In this section we provide a term assignment to constructive tense logic with only @
and ⌅. We leave term assignments to the other varieties of tense logic with 3 and
⌥ for future work.

The typing rules can be found in Figure 13 with the typed equality rules in
Figure 14. Here we can see that types are tense S4 formulas. The sequents have
the form � „ t : A and � „ s = t : A where � is a multiset of free variables and their
types denoted x : A, and s and t are terms with the following syntax:

t := x | ⁄x : A.t | s t | let@ x1 : @ A1, ... , x
k

: @ A
k

be t1, ... , t
k

in t |
let⌅ x1 : ⌅A1, ... , x

k

: ⌅A
k

be t1, ... , t
k

in t | unbox@ t | unbox⌅ t

Equality is straightforward where it is apparent that the let-expressions model ex-
plicit substitutions. These substitutions are triggered when they are applied to an
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propositional basic intuitionistic axioms

@(A æ B) æ (@A æ @B)
@(A æ B) æ (⌥A æ ⌥B)
(@A æ A) · (A æ ⌥A)

(@A æ @ @ A) · (⌥ ⌥ A æ ⌥A)
⌅(A æ B) æ (⌅A æ ⌅B)
⌅(A æ B) æ (3A æ 3B)
(⌅A æ A) · (A æ 3A)

(⌅A æ ⌅⌅A) · (33A æ 3A)
3⌅A æ A · A æ ⌅3A
⌥ @ A æ A · A æ @ ⌥ A

Figure 12: Axioms for TCS4

�, x : A „ x : A Id �, x :‹„ contra : A‹E
�, x : A „ t : B

� „ ⁄x : A.t : A æ B æI

� „ t1 : A æ B � „ t2 : A
� „ t1 t2 : B æE

� „ t : @ B
� „ unbox@ t : B @E

� „ t1 : @ A1, ... , � „ t
k

: @ A
k

x1 : @ A1, ... , x
k

: @ A
k

„ t : B
� „ let@ x1 : @ A1, ... , x

k

: @ A
k

be t1, ... , t
k

in t : @ B @I

� „ t : ⌅B
� „ unbox⌅ t : B⌅E

� „ t1 : ⌅A1, ... , � „ t
k

: ⌅A
k

x1 : ⌅A1, ... , x
k

: ⌅A
k

„ t : B
� „ let⌅ x1 : ⌅A1, ... , x

k

: ⌅A
k

be t1, ... , t
k

in t : ⌅B ⌅I

Figure 13: TCS4 Typing Rules



�, x : A „ t2 = s2 : B � „ t1 = s1 : A
� „ (⁄x : A.t2) t1 = [s1/x]s2 : B —

� „ t1 = s1 : @ A1, ... , � „ tk = sk : @ Ak x1 : @ A1, ... , xk : @ Ak „ t = s : B
� „ unbox@ (let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B @

� „ t1 = s1 : ⌅A1, ... , � „ tk = sk : ⌅Ak x1 : ⌅A1, ... , xk : ⌅Ak „ t = s : B
� „ unbox⌅ (let⌅ x1 : ⌅A1, ... , xk : ⌅Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B⌅

� „ t : A
� „ t = t : A refl

� „ t2 = t1 : A
� „ t1 = t2 : A sym

� „ t1 = t2 : A � „ t2 = t3 : A
� „ t1 = t3 : A trans

Figure 14: TCS4 Equality Rules

unbox-expression.
We have the following basic properties of this term assignment.

Lemma 1 (Substitution for Typing). If �1 „ t1 : A, and �1, x : A, �2 „ t2 : B, then
�1, �2 „ [t1/x]t2 : B.

Proof. This proof holds by straightforward induction on the form of the assumed
typing derivation. Please see Appendix A.1.1 for the proof.

Lemma 2 (Weakening). If �1, �2 „ t : B, then �1, x : A, �2 „ t : B.

Proof. This proof holds by straightforward induction on the form of the assumed
typing derivation. Please see Appendix A.1.2 for the proof.

4 The Categorical Model

There is not much essentially new in what we discuss here about the tense logic
based on CS4. Similar ideas were discussed by Ghilardi and Meloni [13], Makkai
and Reyes [18] and more recently in by Dzik et al [7, 9] and Menni and Smith [19].

The upshot of our discussion is that the categorical model we advance is a carte-
sian closed category endowed with two adjunctions, corresponding to the (limited)
universal and existential quantifications relative to the past and to the future that
correspond to the two sets of necessity and possibility operators.

This setting is though di�erent enough from the precursors we know about,
to justify this note. First, as discussed elsewhere [5], we see no reason for the
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monads/comonads emerging from this setting to be idempotent operators, as they
are in [13] or [18] (the idempotency simplification does not seen warranted by the
proof theory). Secondly we see no reason to take our models as part of toposes, as
we are not interested in the extra structure provided by toposes. However, we also
see no reason to confine ourselves to algebraic models such as Heyting algebras with
operators, as degenerate posetal categories, as both [7] and [19] do. Di�erent proofs
of the same theorem are important to us as they correspond to di�erent morphisms
in the category between the same objects. Thus we are interested in proof relevant

semantics, not simply provability.
We build our main definition in stages. To begin with, a categorical model of

propositional intuitionistic logic is a cartesian closed category C with coproducts.
Then we recall from [5] that to model a pair of modalities using dual contexts we
need a monoidal adjunction.

Definition 3 (adjoint model). An adjoint categorical model of dual context modal
logic DCS4 consists of the following data:

1. A cartesian closed category with coproducts (C, 1, 0, ◊, +, æ);

2. A monoidal adjunction F ‰ G, where (F, m) and (G, n) : C // C are monoidal
functors such that their composition GF is a monoidal comonad, written as
@;

3. The monad (3, ÷, µ, stA,B), induced by the adjunction F ‰ G, is @-strong.

Recall that a monoidal comonad @ implies that there is a natural transformation
m : @ A ◊ @B æ @(A ◊ B) (and m€ : € æ @€) satisfying the coherence conditions
described in page 23 of [5]. Recall as well that by a monad being @-strong, we mean
that there is a strength natural transformation stA,B : @ A ◊ 3B æ 3(@A ◊ B)
satisfying the four equations in page 27 of [5]. These two natural transformations
are required to model the Fisher-Servi axioms, which are a weakening of the duality
between @ and 3 that the classical modalities satisfy.

Finally we consider two pairs of modalities (or two adjunctions), intertwined, as
in tense logic.

Definition 4 (tense calculus model). A categorical model of tense calculus dual
context modal logic TCDS4 is a cartesian closed category C as above, together with
two intertwined adjunctions (⌥ ‰ @, 3 ‰ ⌅). The adjunctions (⌥ ‰ @) and (3 ‰ ⌅)
on C are connected by the Fisher-Servi axioms, namely 3(A æ B) æ (⌅A æ 3B)
and (3A æ ⌅B) æ ⌅(A æ B), as well as ⌥(A æ B) æ (@A æ ⌥B) and
(⌥A æ @B) æ @(A æ B).



This model is more general than the system, TCS4, given above in that it contains
two possibility modalities, which we do not deal with, in the type theory. These
possibility operators could be treated as syntactic sugar for ¬@¬A (and respectively
¬⌅¬A), as they usually are in Intuitionistic Linear Logic, for instance. We refrain
from doing so explicitly and prefer to consider the necessity-only fragment in the type
theory, as this allows us to bypass the discussion of which possibility modality is more
appropriate for each setting. More importantly it allows us to dodge the question
of how to provide a Curry-Howard categorical interpretation for what we called
Simpson-style modal S4. Thus the model should be seen as an over approximation.
We give the more general model here to set the stage for future work.

Categorical soundness is proved, as usual, checking the natural deduction rules
preserve validity of the constructions used, i.e function spaces, products, coproducts
and the two adjunctions.

Define an interpretation [[_]] : TCS4 æ C which takes the types and sequents of
TCS4 (over a basic set of types) to a model C as follows:

[[p]] = I(p) for p a base type
[[€]] = €

[[A æ B]] = [[A]] æ [[B]]
[[@A]] = FG([[A]])
[[⌅A]] = F ÕGÕ([[A]])

We extend this interpretation to lists of types by saying that for a list A1, ..., An of
types, the interpretation is the product of the interpretations [[A1, ...An]] = [[A1]] ◊
. . . ◊ [[An]]. The interpretation will take a sequent � „ t : A to an arrow [[� „ t : A]] :
[[�]] æ [[A]] in the tense modal category.

Theorem 5. The type theory TCS4 has sound models provided by the structures C
defined above. In other words, given a tense adjoint modal category C, using the
above interpretation, the following hold:

• Assume � „ t : A in TCS4. Then [[� „ t : A]] is a morphism with domain [[�]]
and codomain [[A]];

• Assume � „ t = s : A. Then [[� „ t : A]] = [[� „ s : A]].

Proof. The first part holds by induction on � „ t : A, and the second by induction
on � „ t = s : A, but uses the first part. Please see Appendix A.1.3 for the proof.

We have completeness of the tense modal categories when the model is restricted
to box modalities only.
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Theorem 6. The adjoint modal models are complete in the appropriate sense for
the type theory TCS4. This is to say, if we have equality of the interpretations
[[� „ t : A]] = [[� „ s : A]] (where [[ ]] is the interpretation defined above) in the tense
modal category C for any derived sequents � „ t : A and � „ s : A then we can derive
the equation in the type theory TCS4 � „ t = s : A.

Proof. This result can be shown by constructing a cartesian closed category with
coproducts and two comonads, one for @ and one for ⌅, internal to TCS4 where the
objects are types and the morphisms are –-equivalence classes of terms in context
� „ t : A. This category is called the syntactic category. Please see Appendix A.1.4
for the remainder of the proof.

Categorical completeness requires providing an equivalence relation in the Lin-
denbaum algebra of the formulae, as usual in algebraic semantics. The basic cal-
culations, for traditional algebraic semantics in Heyting algebras were provided, for
instance, by Figallo et al in [11] or Dzik et al in [8]. Mutatis mutantis these calcu-
lations will apply for our version of the system (no distribution of diamonds over
disjunctions, no definibility of diamonds in terms of negated boxes).

5 Conclusions

We have described a tense version of constructive temporal logic, conceived as a
basic category of propositions, together with two adjunctions, corresponding to two
kinds of necessity modalities, in the future and in the past. This system is based
on traditional work of Ewald in [10], where we simply do the modifications required
to account for the categorical model desired. This work is somewhat inspired by
recent work on Functional Reactive Programming (FRP) by Jeltsch [16] and Je�rey
[15], independently. Both of these works consider Curry-Howard correspondents
to temporal logic, but they tend to concentrate on the next temporal operator,
originally considered in LTL (Linear Temporal Logic), as suggested by Davies [6].
The temporal operators we consider are more abstract and one can hope that they
may shed some light on the issues of FRP. But this is future work.
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A Appendix

A.1 Proofs

A.1.1 Proof of Substitution for Typing

Lemma (Substitution for Typing). If �1 „ t1 : A, and �1, x : A, �2 „ t2 : B, then
�1, �2 „ [t1/x]t2 : B.

Proof. Suppose �1 „ t1 : A and �1, x : A, �2 „ t2 : B. We case split on the structure
of the latter, but only show the non-trivial cases. All other cases are similar.

Case Identity.

�1, x : A, �2 „ y : C
Id

In this case t2 = y and B = C . We are not sure if x = y, thus, we must
consider the case when they are and are not equal.
Suppose x ”= y. Then [t1/x]t2 = [t1/x]y = y by the definition of substitution.
In addition, it must be the case that either y : C œ �1 or y : C œ �2. This
implies that �1, �2 „ y : C or �1, �2 „ [t1/x]t2 : B hold.
Now suppose x = y. Then A = B, and [t1/x]t2 = [t1/x]x = t1 by the definition
of substitution. Thus, �1, �2 „ [t1/x]t2 : B holds, because we know �1, �2 „
t1 : A.

Case Implication Introduction.

�1, x : A, �2, y : C1 „ t : C2
�1, x : A, �2 „ ⁄y : C1.t : C1 æ C2

æI

In this case B = C1 æ C2 and t2 = ⁄y : C .t. By the induction hypothesis we
know �1, �2, y : C1 „ [t1/x]t : C2, and then by reapplying the rule we know
�1, �2 „ ⁄y : C1.[t1/x]t : C2 holds. However, by the definition of substitution
we know ⁄y : C1.[t1/x]t = [t1/x](⁄y : C1.t), and thus, we obtain our result.

Case Implication Elimination.
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�1, x : A, �2 „ t Õ
1 : C1 æ C2 �1, x : A, �2 „ t Õ

2 : C1
�1, x : A, �2 „ t Õ

1 t Õ
2 : C2

æE

We now have that B = C2 and t2 = t Õ
1 t Õ

2. By the induction hypothesis we
know that �1, �2 „ [t1/x]t Õ

1 : C1 æ C2 and �1, �2 „ [t1/x]t Õ
2 : C1 both hold.

Then by reapplying the rule we obtain that �1, �2 „ ([t1/x]t Õ
1) ([t1/x]t Õ

2) : C2,
and thus, by the definition of substitution �1, �2 „ [t1/x](t Õ

1 t Õ
2) : C2 holds.

Case @ Introduction.

�1, x : A, �2 „ t

Õ
1 : @ C1, ... , �1, x : A, �2 „ t

Õ
k : @ Ck x1 : @ C1, ... , xk : @ Ck „ t : C

�1, x : A, �2 „ let@ x1 : @ C1, ... , xk : @ Ck be t

Õ
1, ... , t

Õ
k in t : @ C

@I

In this case B = @ C and t2 = let@ x1 : @ C1, ... , x
k

: @ C
k

be t Õ
1, ... , t Õ

k

in t. By
the induction hypothesis we know that

�1, �2 „ [t1/x]t Õ
1 : @ C1, . . . , �1, x : A, �2 „ [t1/x]t Õ

k

: @ C
k

all hold. Then by reapplying the rule we know that

�1, �2 „ let@ x1 : @ C1, ... , x
k

: @ C
k

be [t1/x]t Õ
1, ... , [t1/x]t Õ

k

in t : @ C ,

but by the definition of substitution and the fact that [t1/x]t = t because t
does not depend on x we know that

�1, �2 „ [t1/x](let@ x1 : @ C1, ... , x
k

: @ C
k

be t Õ
1, ... , t Õ

k

in t) : @ C

holds.

A.1.2 Proof of Weakening

Lemma (Weakening). If �1, �2 „ t : B, then �1, x : A, �2 „ t : B.

Proof. This proof is by induction on the form of �1, �2 „ t : B. We only show a few
cases, because the others are similar.

Case Identity.

�1, �2, y : C „ y : C
Id



In this case we have that B = C and t = y. We must show that �1, x :
A, �2, y : C „ y : C holds, but this clearly holds by reapplying the rule.

Case @ Introduction.

�1, �2 „ t1 : @ C1, ... , �1, �2 „ tk : @ Ck x1 : @ C1, ... , xk : @ Ck „ t

Õ : C

�1, �2 „ let@ x1 : @ C1, ... , xk : @ Ck be t1, ... , tk in t

Õ : @ C

@I

This case is similar to the previous case. First, apply the induction hypothesis
to the left-most premise, and then reapply the rule.

A.1.3 Proof of Soundness of TCS4

Theorem. The type theory TCS4 has sound models provided by the structures C
defined above. In other words, given a tense adjoint modal category C, using the
above interpretation, the following hold:

• Assume � „ t : A in TCS4. Then [[� „ t : A]] is a morphism with domain [[�]]
and codomain [[A]];

• Assume � „ t = s : A. Then [[� „ t : A]] = [[� „ s : A]].

Proof. The first part holds by induction on � „ t : A, and the second by induction
on � „ t = s : A. We give a few cases of each part, as the others are similar.
Throughout the proof we drop semantic brackets on objects, and we assume, without
loss of generality, that the interpretation of contexts are left associated. We begin
with the first part.

Case Identity.

�, x : A „ x : A Id

We need to provide a morphism � ◊ A f //A and we choose f = fi2 (the 2nd
projection), as usual.

Case Implication Introduction.

�, x : A „ t : B
� „ ⁄x : A.t : A æ B æI
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By the induction hypothesis we know that there is a morphism � ◊ A f //B.
Then we need to find a morphism � g // (A æ B). Choose g = curry(f) where
curry : HomC(A ◊ B, C ) // HomC(A, B æ C ) is a natural isomorphism that
exists because C is closed.

Case @ Introduction.

� „ t1 : @ A1, ... , � „ t
k

: @ A
k

x1 : @ A1, ... , x
k

: @ A
k

„ t : B
� „ let@ x1 : @ A1, ... , x

k

: @ A
k

be t1, ... , t
k

in t : @ B @I

By the induction hypothesis we have the family of morphisms � f1 // @
A1, . . . , � fk //@ A

k

, and a given morphism @ A1◊· · ·◊@ A
k

f //B. We need to
find a morphism � g // B. As in previous work, we choose
g = Èf1; ”

A1 , . . . , fk; ”
Ak Í; m; @f , where È≠, ≠Í : HomC(�, @ A1) ◊ · · · ◊ HomC

(�, @ A
k

) // HomC(�, @ A1 ◊ · · · ◊ @ A
k

) exists because C is cartesian and we
make the simplifying assumption that @ is an endofunctor.

Case @ Elimination.

� „ t : @ B
� „ unbox@ t : B @E

By the induction hypothesis there is a morphism � f // @ B. It su�ces to
find a morphism � g // B. Choose g = f ; ÷B where ÷B : @ B // B is the unit
of the adjunction.

We now turn to the second part:
Case Unboxing @.

� „ t1 = s1 : @ A1, ... , � „ tk = sk : @ Ak x1 : @ A1, ... , xk : @ Ak „ t = s : B

� „ unbox@ (let@ x1 : @ A1, ... , xk : @ Ak be t1, ... , tk in t) = [s1/x1] ... [sk/xk ]s : B

@

Using the interpretations given above we must show that:
Èf1; ”

A1 , . . . , fk; ”
Ak Í; m; @f ; ÷B = Èf1, . . . , fkÍ; f : � // B.

This holds by the following equational reasoning:
Èf1; ”A1 , . . . , fk; ”Ak Í; m; @f ; ÷B = Èf1; ”A1 , . . . , fk; ”Ak Í; m; ÷; f

= Èf1; ”A1 , . . . , fk; ”Ak Í; (÷A1 ◊ · · · ◊ ÷Ak ); f
= Èf1; ”A1 ; ÷A1 , . . . , fk; ”Ak ; ÷Ak Í; f
= Èf1, . . . , fkÍ; f



A.1.4 Proof of Completeness for TCS4

Theorem. The adjoint modal models are complete in the appropriate sense for
the type theory TCS4. This is to say, if we have equality of the interpretations
[[� „ t : A]] = [[� „ s : A]] (where [[ ]] is the interpretation defined above) in the tense
modal category C for any derived sequents � „ t : A and � „ s : A then we can derive
the equation in the type theory TCS4 � „ t = s : A.

Proof. This result can be shown by constructing a cartesian closed category with
two monoidal comonads, one for @ and one for ⌅, internal to the type theory TCS4
where the objects are types and the morphisms are –-equivalence classes of terms in
context � „ t : A. This category is called the syntactic category for the TCS4 type
theory.

Showing that this syntactic category is cartesian closed is well known, but we
illustrate the proof by describing the case of the @ comonad.

We denote a morphism by the –-equivalence class:

[x̨, t]Ą,B = [x̨ : Ą „ t : B]

We then have the following definitions:

• (Identity) id = [x, x]A,A

• (Composition) Given morphisms [x̨, t]Ą,Bi and [y̨, t Õ]B̨,C , their composition
[x̨, t]Ą,Bi ; [y̨, t Õ]B̨,C = [ ˛xi≠1, y̨, ˛xi+1, [t/xi]t Õ]Ą,C .

• (Equality) Two parallel morphisms [x̨, t]Ą,B and [x̨, t Õ]Ą,B are equal if and only
if x̨ : Ą „ t = t Õ : B.

Using basic facts about substitution one can show that composition preserves iden-
tity and is associative.

We first must show that @ is an endofunctor on the syntactic category. Suppose
we have the morphism [x̨, t]Ą,B. Then we must construct a morphism [y̨, tÕ]

≠≠æ@ A,@ B.
The latter morphism can be defined in two steps. The first is to change the Ą to≠≠æ@ A:

[y̨, ·unbox@ y
i

]
≠≠æ@ A,Ą; [x̨, t]Ą,B̨ = [y̨, [unbox@ y

i

/x
i

]t]
≠≠æ@ A,B̨

The second step is to change B into @ B:

[y̨, let@ y̨ : ≠≠æ@ A be y̨ in [unbox@ y
i

/x
i

]t)]
≠≠æ@ A,@ B

Straightforward calculations show that this construction preserves identities and
composition.
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The unit of the comonad is defined as [y, unbox@ y]@ A,A. Next we need to define
a morphism between @ A and @ @ A:

[y, let@ y : @ A be y in y]@ A,@ @ A

Finally, using these constructions it is possible to show the usual diagrams defining
the comonad @ hold. The definition for ⌅ is similar.
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