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Abstract. This paper discusses categorical formulations of the Medvedev, Muchnik and
Weihrauch reducibilities in Computability Theory and connects these reducibilities to dif-
ferent Lawvere categorical doctrines. These specific doctrines were used in previous work
to provide categorical models for Dialectica logical properties. We relate Medvedev and
Weihrauch doctrines to the Dialectica doctrine, showing that all these doctrines can be
conceptualized in terms of (logic) quantifier (existential and universal) completions.

1. Introduction

Categorical methods and language have been employed in many areas of Mathematics. In
Mathematical Logic they are widely used in Model Theory and Proof Theory, less so in
Set Theory. After all, category theory is sometimes seen as a competitor to Set Theory, as
both are considered foundations for mathematics. In Recursion or Computability Theory,
there is a long tradition of categorical methods in Realizability studies, expounded in the
van Oosten book “Realizability: An Introduction to its Categorical Side” [vO08]. The
use of categorical methods in Realizability includes, for example, Hofstra’s work on “All
Realizability is Relative” [Hof06]. Hofstra proved that most well-known realizability triposes,
(e.g. the “effective” tripos, the “modified realizability” tripos and the “dialectica” tripos)
are instances of a more general notion of tripos associated to a given partial combinatory
algebra (PCA). His point was that all these triposes can be presented as “triposes for a
given PCA”, hence all these notions differ only in the choice of the associated PCA, and we
could say that all realizability is relative to a choice of a PCA. This formulation explains
and systematizes the different kinds of triposes for realizability developed independently
before.
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Previous work of Trotta and Maietti [MT23] also showed that every realizability tripos
(in the general sense of a tripos constructed from a PCA) is an instance of the generalized
existential completion. So every realizability tripos is obtained by freely adding left
adjoints along the class of all morphisms of the base category. Hence, in particular, the di-
alectica tripos (Biering in [Bie08], the tripos of modified realizability, etc... are all instances
of the generalized existential completion. This reformulation explains and systematizes the
different kinds of triposes for realizability in terms of an existential completion.

In this paper we want to extend the use of categorical methods to further areas of
Computability. We want to discuss categorical formulations of Medvedev, Muchnik and
Weihrauch reducibility [Hin12] and connect these to different categorical doctrines used in
our previous work [TSdP22, TSdP21]. In particular, we relate Medvedev and Weihrauch
doctrines to the Dialectica doctrine, showing that all these doctrines can be conceptualized
in terms of quantifier completions.

Putting together a categorical understanding of reducibility in computability with cat-
egorical logic semantic descriptions in terms of ‘(hyper)doctrines’ to show a bridge between
these two areas of mathematical logic seems helpful to both sides. For categorical proof-
theorists it encompasses models of both functional interpretations and computability under
the same kind of construction: both realizability/Dialectica triposes and reducibility degrees
are versions of quantifier completions. For recursion theorists it extends the categorification
of realizability (described e.g. in [vO08]) to degrees of reducibility (Medvedev, Muchnik and
Weihrauch) not usually considered in categorical terms. The categorical formulation allows
for abstract, easier proofs of results.

The outline of this paper is as follows. In section 2 we recall general computability
definitions we need. In section 3 we recall doctrines and quantifier completions. In section
4 we reformulate Medvedev and Muchnik reducibility in categorical terms. In Section 5 we
categorify Weihrauch reducibility and in Section 6 we compare Medvedev and Wayrauch
doctrines to Dialectica ones. We draw some general lessons in section 7.

2. Computability Notions

Realizability theory originated with Kleene’s interpretation of intuitionistic number the-
ory [Kle45] and has since developed into a large body of work in logic and theoretical
computer science. We focus on two basic flavours of realizability, number realizability and
function realizability, which were both due to Kleene.

In this section we recall some standard notions within realizability and computability,
including partial combinatory algebras, represented spaces, assemblies and modest sets. We
follow the approach suggested by Hofstra [Hof04], as we want to fix a suitable notation for
both category theorists and computability logicians.

We describe partial combinatory algebras and discuss some important examples. For
more details, we refer the reader to van Oosten’s work on categorical realizability [vO08,
vO13]. But start by introducing the basic concept of a partial applicative structure or PAS,
due to Feferman, which may be viewed as a universe for computation.

Definition 2.1 (PAS). A partial applicative structure, or PAS for short, is a set A

equipped with a partial binary operation · :⊆ A×A → A.

Some conventions and terminology: Given two elements a, b in A, we think of a · b
(which we often abbreviate ab) as “a applied to b”. The partiality of the operation · means
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that this application need not always be defined. We write f :⊆ A → B to say that f is a
partial function with domain a subset of A, dom(f) ⊂ A and range exactly ran(f) = B. If
(a, b) ∈ dom(·), that is, when the application is defined, then we write a · b ↓ or ab ↓.

We usually omit brackets, assuming associativity of application to the left. Thus abc
stands for (ab)c. Moreover, for two expressions x and y we write x ≃ y to indicate that x
is defined whenever y is, in which case they are equal.

Even though these partial applicative structures do not possess many interesting prop-
erties (they have no axioms for application), they already highlight one of the key features
of combinatorial structures, namely the fact that we have a domain of elements that can act
both as functions and as arguments, just as in untyped λ-calculus. This behaviour can be
traced back to Von Neumann’s idea that programs (functions, operations) live in the same
realm and are represented in the same way as the data (arguments) that they act upon. In
particular, programs can act on other programs.

Now we can state the definition of a partial combinatory algebra (PCA).

Definition 2.2 (PCA). A partial combinatory algebra (PCA) is a PAS A for which
there exist elements k, s ∈ A such that for all a, b, c ∈ A we have that

ka ↓ and kab ≃ a

and

sa ↓ , sab ↓ , and sabc ≃ ac(bc)

The elements k and s are generalisations of the homonymous combinators in Combina-
tory Logic. Note that appropriate elements k, s are not considered part of the structure of
the partial combinatory algebra, so they do not need to be preserved under homomorphisms.

Given a PCA A one can prove its combinatory completeness in the sense of [Fef75, vO08],
namely: for every term t(x1, . . . , xn+1) built from variables x1, . . . , xn+1, constants c̄ for
c ∈ A, and an application operator ·, there is an element a ∈ A such that for all elements
b1, . . . , bn+1 ∈ A we have that ab1 · · · bn ↓ and ab1 · · · bn+1 ≃ t(b1, . . . , bn+1).

In particular, we can use this result and the elements k and s to construct elements
p, p1, p2 of A so that (a, b) 7→ pab is an injection of A×A to A with left inverse a 7→ (p1a, p2a).
Hence, we can use pab as an element of A which codes the pair (a, b). For this reason,
the elements p, p1, p2 are usually called pairing and projection operators. For the sake of
readability, we write 〈a, b〉 in place of pab.

Using s and k, we can prove the analogues of the Universal Turing Machine (UTM)
and the SMN theorems in computability in an arbitrary PCA.

A PCA A is called extensional if for all x in A, (ax ≃ bx) implies a = b. By definition,
in every extensional PCA, if elements represent the same partial function, then they must
be equal.

Example 2.3 (Kleene’s first model). Fix an effective enumeration (ϕa)a∈N of the partial
recursive functions N → N (i.e. a Gödel numbering). The set N with partial recursive
application (a, b) 7→ ϕa(b) is a PCA, and it is called Kleene’s first model K1 (see e.g.
[Soa87]).

Example 2.4 (Kleene’s second model). K2 is a PCA for function realizability [vO08, Sec.
1.4.3]. This PCA is given by the Baire space N

N, endowed with the product topology. The
partial binary operation of application · :⊆ N

N × N
N → N

N corresponds to the one used in
Type-2 Theory of Effectivity [Wei00]. This can be described as follows. Let α[n] denote
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the string (α(0), . . . , α(n− 1)). Every α ∈ N
N induces a function Fα :⊆ N

N → N defined as
Fα(β) = k if there is n ∈ N such that α(〈β[n]〉) = k + 1 and (∀m < n)(α(〈β[n]〉) = 0), and
undefined otherwise. The application α ·β can then be defined as the map n 7→ Fα((n)

aβ),
where (n)aβ is the string σ defined as σ(0) := n and σ(k + 1) := β(k).

Remark 2.5. Kleene’s K1 and K2 presented above are not extensional, since there are many
codes (programs) that compute the same function. In fact, every function has infinitely
many representatives.

Next we recall the notion of elementary sub-PCA. Many definitions in the computability
context refer to a concept and a subset of the given concept, as one needs to pay attention
to the computable functions (and elements) included in the original concept.

Definition 2.6 (elementary sub-PCA). Let A be a PCA. A subset A
′ ⊆ A is called an

elementary sub-PCA of A if it is closed under the application of A, that means: if
a, b ∈ A

′ and ab ↓ in A then ab ∈ A
′ and A

′ is a PCA with the partial applicative structure
induced by A.

In particular, elements of the sub-PCA will play the role of the computable functions.
For example, in Kleene’s second model, we usually consider the elementary sub-PCA N

N
eff

consisting of all the α ∈ N
N such that β 7→ α · β is computable or effective. For more

details and examples, also of non-elementary sub-PCAs for Kleene’s second model, we refer
to [vO11].

We now briefly recall a few definitions in the context of Computable Analysis. For a
more thorough presentation, the reader is referred to [BGP21, Wei00].

Definition 2.7 (represented space). A represented space is a pair (X, δX ), where X is
a set and δX :⊆ N

N → X is a surjective map usually called a representation map.

We avoid mentioning explicitly the representation map whenever there is no ambiguity.
For any given x in X, the set δ−1

X (x) is the set of δX-names or δX-codes for x.
A (partial) multi-valued function from X to Y , written as f :⊆ X ⇒ Y , is a function

into the powerset f : X → ℘(Y ). The domain of f is the set {x ∈ X : f(x) 6= ∅}. Whenever
f(x) is a singleton for every x ∈ dom(f), we write f(x) = y instead of f(x) = {y}. It
helps the intuition to think of multi-valued functions as computational problems, namely
instance-solution pairs, where a single problem instance can have multiple solutions.

Definition 2.8 (realizer). Let f :⊆ X ⇒ Y be a multi-valued function between the repre-
sented spaces (X, δX ) and (Y, δY ). A realizer F for f (we write F ⊢ f) is a function F :⊆
NN → NN such that for all p in the domain of (f ◦ δX) we have that (δY (F (p)) ∈ f(δX(p))).

Realizers are useful, they help us transfer properties of functions on the Baire space
(such as computability or continuity) to multi-valued functions on the represented spaces.

Because the representing maps in represented spaces are partial, the more convenient
category-theoretical notion corresponding to a represented space is the notion of an assembly
(see [vO08, Def. 1.5.1]). More precisely:

Definition 2.9 (assembly). Let A be a PCA. An assembly is a pair (X,E) where X is a
set and E is a function E : X → ℘∗(A), where ℘∗(A) the set of non-empty subsets of A. A
morphism of assemblies f : (X,E) → (Y, F ) is a function f : X → Y such that there exists
an element a ∈ A with the property that for every x ∈ X and every b ∈ E(x), ab ↓ and
ab ∈ F (f(x)). We sometimes say that a tracks or realizes the function f .
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Assemblies on a PCA A and their morphisms form a category denoted by Asm(A).
(Note that the Es are total functions, even if multi-valued.)

Definition 2.10 (relative assembly). Let A be a PCA and A′ ⊂ A be an elementary sub-
PCA of A. We define the category of relative assemblies Asm(A,A′) as the subcategory
of Asm(A) having assemblies as objects and where morphisms are morphisms of assemblies
with the property that functions have a realizer in A

′.

Remark 2.11. Notice that if (X, δX ) is a represented space according to Definition 2.7,
then (X, δ−1

X ) is an assembly as in Definition 2.9.

We can check directly that while every represented space (X, δX ) as in Definition 2.7
gives rise to a unique assembly (X, δ−1

X ) as in Definition 2.9, the converse does not hold in
general. Assemblies corresponding to represented spaces are usually called modest sets [Ros90].

Definition 2.12 (modest set). Let A be a PCA with elementary sub-PCA A
′. An assembly

(X,E) is called a modest set if for every x, y ∈ X, we have E(x)∩E(y) = ∅. The category
of modest sets is defined as the full subcategory Mod(A,A′) of Asm(A,A′) whose objects
are modest sets.

Since for each modest set there is a corresponding represented space we will make no
distinction between these in terms of notation. In particular, we will always adopt the
notation of representable spaces (X, δX ) to indicate modest sets.

3. Categorical Doctrines

We want to connect the notions of computability described in the previous subsection to
work on (logical) categorical doctrines in [TSdP22]. We recap only the essential definitions
from the doctrines work in the text; further details and explanation can be found in [TSdP21,
TSdP22].

Several generalisations of the notion of a (Lawvere) hyperdoctrine have been considered
recently, we refer, for example, to the works of Rosolini and Maietti for that [MPR17,
MR13a, MR13b] or to [Pit02, HJP80] for higher-order versions. However, in this work we
consider a natural generalisation of the notion of hyperdoctrine, which we call simply a
doctrine.

Definition 3.1 (doctrine). A doctrine is a contravariant functor:

P : Cop // Pos

where the category C has finite products and Pos is the category of (partially ordered sets
or) posets.

Definition 3.2 (morphism of doctrines). A morphism of doctrines is a pair L := (F, b)

Cop

P

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

F op

��

Pos

Dop
R

77♦♦♦♦♦♦♦♦♦♦♦♦♦

b

��
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such that F : C → D is a finite product preserving functor and:

b : P → RF op

is a natural transformation.

Example 3.3. Let A be a PCA. We can define a functor A
(−) : Setop // Pos assigning

to a set X the set AX of functions from X to A. Given two elements α, β ∈ AX , we have
that α ≤ β if there exists an element a ∈ A such that for every x ∈ X we have that a ·α(x)
is defined and a · α(x) = β(x). This is the doctrine associated to the PCA A.

We recall the following example from [Pit02, HJP80].

Example 3.4. Given a PCA A, we can consider the realizability doctrine R : Setop // Pos

over Set. For each setX, the partial order (R(X),≤) is defined as the set of functions℘(A)X

from X to the powerset ℘(A) of A. Given two elements α and β of R(X), we say that α ≤ β
if there exists an element a ∈ A such that for all x ∈ X and all a ∈ α(x), a · a is defined
and it is an element of β(x). By standard properties of PCAs this relation is reflexive and
transitive, i.e. it is a preorder. Then R(X) is defined as the quotient of ℘(A)X by the
equivalence relation generated by the ≤. The partial order on the equivalence classes [α] is
the one induced by ≤.

We also need to recall the definitions of existential and universal doctrines, in general.

Definition 3.5 (D-existential/universal doctrines). Let C be a category with finite products,
and let D a class of morphisms of C closed under composition, pullbacks and identities.

A doctrine P : Cop // Pos is D-existential (resp. D-universal) if, for every arrow
f : A→ B of D the functor:

Pf : PB → PA

has a left adjoint ∃f (resp. a right adjoint ∀f ), and these satisfy the Beck-Chevalley condition
BC: for any pullback diagram:

X ′ g′
//

h′

��

A′

h

��
X

g
// A

and any β in P (X) the equality:

∃g′Ph′β = Ph∃gβ ( resp. ∀g′Ph′β = Ph∀gββ )

holds. When D is the class of all the morphisms of C we say that the doctrines P is full

existential (resp. full universal), while when D is the class of product projections, we
will say that P is pure existential (resp. pure universal).

Next we summarise the main properties of the generic full existential and universal
completions in the following theorems and refer to [Tro20] for more details.

Generalized existential completion. Let P : Cop // Pos be a doctrine and let D be
a class of morphisms of C closed under composition, pullbacks and containing identities.
For every object A of C consider the following preorder:

• objects: pairs ( B
f∈D

// A ,α), where f : B → A is an arrow of D and α ∈ P (B).
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• order: ( B
f∈D

// A ,α) ≤ ( C
g∈D

// A , β) if there exists an arrow h : B // C of C
such that the diagram

B

f

��

h

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

C
g

// A

commutes and

α ≤ Ph(β)

.

It is easy to see that the previous data gives a preorder. We denote by P ∃D(A) the partial
order obtained by identifying two objects when

( B
h∈D // A ,α) R ( D

f∈D
// A , γ)

in the usual way. By abuse of notation, we denote the equivalence class of an element in

the same way. Given a morphism f : A→ B in C, let P ∃D
f ( C

g
// B , β) be the object

( D
f∗g∈D

// A , Pg∗f (β))

where f∗g and g∗f are defined by the pullback

D

f∗g

��

❴
✤

g∗f
// C

g

��
A

f
// B.

gm The assignment P ∃D : Cop // Pos is called the generalized existential comple-

tion of P . Following [Tro20, MT23], when D is the class of all the morphisms of the
base category, we will speak of full existential completion, and we will use the notation

P ∃f : Cop // Pos . Moreover, when D is the class of all product projections, we will speak

of pure existential completion, and we will use the notation P ∃ : Cop // Pos .

Theorem 3.6 ([Tro20]). The doctrine P ∃D is D-existential. Moreover, for every doctrine

P we have a canonical inclusion η∃DP : P → P ∃D such that, for every morphism of doctrines
L : P → R, where R is D′-existential and the functor between the bases sends arrows of
D into arrows of D′, there exists a unique (up to iso) existential morphism doctrine (i.e.
preserving existential quantifiers along D) such that the diagram

P ∃D

��✤
✤

✤

✤

P

η
∃D

P

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

L

// R

commutes.
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By dualising the previous construction, we can define the D-universal completion of a
doctrine.

Full universal completion. Let P : Cop // Pos be a doctrine and let D be a class of
morphisms of C closed under composition, pullbacks and containing identities. For every
object A of C consider the following preorder:

• objects: pairs ( B
f∈D

// A ,α), where f : B → A is an arrow of D and α ∈ P (B).

• order: ( B
f∈D

// A ,α) ≤ ( C
g∈D

// A , β) if there exists an arrow h : C // B of C
such that the diagram

B

f

��
C

g
//

h

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦
A

commutes and

Ph(α) ≤ β

.

Again, it is easy to see that the previous data gives us a preorder. We denote by P ∀D(A)
the partial order obtained by identifying two objects when

( B
h∈D // A ,α) R ( D

f∈D
// A , γ)

in the usual way. By abuse of notation, we denote the equivalence class of an element in

the same way. Given a morphism f : A→ B in C, let P ∀D
f ( C

g∈D
// B , β) be the object

( D
f∗g∈D

// A , Pg∗f (β))

where f∗g and g∗f are defined by the pullback

D

f∗g

��

❴
✤

g∗f
// C

g

��
A

f
// B.

The assignment P ∀f : Cop // Pos is called the D-universal completion of P . As before,
when D is the class of all the morphisms of the base category, we will speak of full universal

completion, and we will use the notation P ∀f : Cop // Pos . Moreover, when D is the
class of all product projections, we will speak of pure universal completion, and we will

use the notation P ∀ : Cop // Pos .

Theorem 3.7 ([Tro20]). The doctrine P ∀D is D-universal. Moreover, for every doctrine P

we have a canonical inclusion η∀DP : P → P ∀D such that, for every morphism of doctrines
L : P → R, where R is D′-universal and the functor between the bases sends arrows of D
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into arrows of D′, there exists a unique (up to isomorphism) universal morphism doctrine
(i.e. preserving universal quantifiers along D) such that the diagram

P ∀D

��
✤

✤

✤

✤

P

η
∀D

P

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

L

// R

commutes.

Now that we recalled both basic concepts of computability and the tools we need from
Lawvere doctrines we can start on the computability concepts we want to categorify here.
First we recall Medvedev reducibility and show it can be reformulated as a Medvedev
doctrine.

4. Medvedev doctrines

The notion of Medvedev reducibility was introduced in the 50s, associated to a calculus of
mathematical problems1 in the style of Kolmogorov [Kol91], and now it is well established
in the computability literature. We briefly introduce the main notions and definitions on
the topic. For a more thorough presentation, the reader is referred to [Sor96, Hin12].

A set A ⊆ NN is sometimes called a mass problem. The intuition is that a mass problem
corresponds to the set of solutions for a specific computational problem. For example, the
problem of deciding membership in a particular P ⊂ N corresponds to the mass problem
{χP }, where χP is the characteristic function of P . Similarly, the problem of enumerating
P corresponds to the family {f : N → P such that f is surjective}.

While Medvedev reducibility is usually defined in the context of Type-2 computability,
we can give a slightly more general definition in the context of PCAs.

Definition 4.1 (Medvedev reducible set). Let A be a PCA and let A
′ be an elementary

sub-PCA of A. If A,B ⊆ A, we say that set A is Medvedev reducible to set B, and
write A ≤M B, if there is an effective functional Φ ∈ A′ such that Φ(B) ⊆ A, i.e. (∀b ∈
B)(Φ(b) ∈ A).

The notion of Medvedev reducibility induces a quasi-order on the powerset of A, ℘(A),
whose quotient is the Medvedev lattice. In the following, whenever there is no ambiguity,
we identify a degree with any of its representatives.

The quotient of the Medvedev order is the Medvedev lattice. The Medvedev doctrine
maps every singleton to an isomorphic copy of the Medvedev lattice. However, if X is not
a singleton, we obtain a somewhat different structure, as mentioned after the definition.
Intuitively, it is like having several Medvedev reductions all witnessed by the same map.

We are ready to start defining a Medvedev doctrine. We first define aMedvedev doctrine
of singletons.

1Recently de Paiva and Da Silva showed that Kolmogorov problems can be seen as a variant of the
Dialectica construction [dPdS21].
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Definition 4.2. Let A be a PCA and A
′ be an elementary sub-PCA. We can define a

functor AM : Setop // Pos mapping a set X to the set AX of functions from X to A.

Given two elements α, β ∈ AM (X), we define α ≤dM β if there exists an element a ∈ A
′

such that for every x ∈ X we have that a · β(x) is defined and a · β(x) = α(x). The functor

AM : Setop // Pos is called Medvedev doctrine of singletons.

Definition 4.3 (Medvedev doctrine). Given a PCA A with elementary sub-PCA A′, we

define the Medvedev doctrine M : Setop // Pos over Set as follows: for every set X

and every pair of functions ϕ,ψ in ℘(A)X , we define

ϕ ≤M ψ : ⇐⇒ (∃a ∈ A
′)(∀x ∈ X)(∀b ∈ ψ(x))(∃a ∈ ϕ(x))(a · b = a)

⇐⇒ (∃a ∈ A
′)(∀x ∈ X)(a · ψ(x) ⊆ ϕ(x)).

This preorder induces an equivalence relation on functions in ℘(A)X . The poset M(X) is
defined as the quotient of ℘(A)X by the equivalence relation generated by the ≤M. The
partial order on the equivalence classes [ϕ] is the one induced by the Medvedev order ≤M.
Moreover, given a function f : X → Y , the functor Mf : M(Y ) → M(X) is defined as
Mf (ψ) := ψ ◦ f .

Observe that, whenever X is a singleton and (A,A′) = (NN,NN

eff) is Kleene’s second
PCA, the partial order M(X) corresponds exactly to the Medvedev degrees. For a generic
X ⊆ NN and ϕ,ψ ∈ M(X), the reduction ϕ ≤M ψ corresponds to a uniform strong om-
niscient computable reduction, where the strong omniscient computable reducibility was
introduced in [MP19].

Now we want to show that, for every X, M(X) is a distributive lattice with ⊥ = {A}
and ⊤ = ∅, where the join and the meet of the lattice are induced respectively by the
following operation on mass problems:

• A ∨B := {〈a, b〉 : a ∈ A and b ∈ B},
• A∧B := A⊔B = {0aa : a ∈ A} ∪ {1ab : b ∈ B}, where naf(0) := n and naf(i+1) :=
f(i).

Next we want to show that the lattice of Medvedev degrees is not a Heyting algebra
(see [Sor96, Thm. 9.2]) but only a co-Heyting algebra (i.e. a Brouwer algebra, see [Sor96,
Thm. 9.1]), where the subtraction operation is defined as A\B := min{C : B ≤ A ∨B}. In
other words, this subtraction is an ‘implication’ with respect to the join of the lattice.

Proposition 4.4 (Medvedev co-Heyting algebra). For every set X, M(X) is a co-Heyting
algebra, where:

(1) ⊥ := x 7→ A

(2) ⊤ := x 7→ ∅;
(3) (ϕ ∧ ψ)(x) := {〈p1, a〉 : a ∈ ϕ(x)} ∪ {〈p2, b〉 : b ∈ ψ(x)}, where p1, p2 are two fixed

(different) elements in A′.
(4) (ϕ ∨ ψ)(x) := {〈a, b〉 : a ∈ ϕ(x) and b ∈ ψ(x)};
(5) (ϕ\ψ)(x) := {c ∈ A : (∀b ∈ ψ(x))(c · b ∈ ϕ(x))}.

Proof. This proposition can be proved essentially the same way one proves that the Medvedev
degrees form a co-Heyting algebra (see [Sor96, Thm. 1.3]). Let ϕ,ψ ∈ M(X).

(1) The reduction ⊥ ≤M ϕ is witnessed by the identity functional.
(2) The reduction ϕ ≤M ⊤ is trivially witnessed by any a ∈ A

′, as the quantification on
b ∈ ⊤(x) is vacuously true.
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(3) The reductions ϕ ∧ ψ ≤M ϕ and ϕ ∧ ψ ≤M ψ are witnessed respectively by the maps
a 7→ 〈p1, a〉 and b 7→ 〈p2, b〉. Moreover, if ρ ≤M ϕ via aϕ and ρ ≤M ψ via aψ then the
reduction ρ ≤M ϕ∧ψ is witnessed by the map that, upon input 〈p, c〉, if p = p1 returns
aϕ · c, otherwise returns aψ · c.

(4) The reductions ϕ ≤M ϕ∨ψ and ψ ≤M ϕ∨ψ are witnessed by the projections. Moreover,
if ϕ ≤M ρ via aϕ and ψ ≤M ρ via aψ then ϕ ∨ ψ ≤M ρ is witnessed by the map
x 7→ 〈aϕ · x, aψ · x〉.

(5) We need to show that, for every ρ, ϕ\ψ ≤M ρ ⇐⇒ ϕ ≤M ψ ∨ ρ. To prove the
left-to-right implication, observe that if a ∈ A

′ witnesses the reduction ϕ\ψ ≤M ρ,
then, for every 〈b, d〉 ∈ (ψ ∨ ρ)(x), a · d ∈ (ϕ\ψ)(x), and therefore (a · d) · b ∈ ϕ(x).
To prove the right-to-left implication, notice that if b witnesses ϕ ≤M ψ ∨ ρ, then, by
definition, for every 〈b, c〉 ∈ (ψ ∨ ρ)(x), b · 〈b, c〉 ∈ ϕ(x). This implies that the map
b 7→ b · 〈b, c〉 ∈ (ϕ\ψ)(x), therefore concluding the proof.

Now we want to show some structural properties of Medvedev doctrines. Using the two
theorems we recalled from previous work, we can show:

Proposition 4.5. The Medvedev doctrine M : Setop // Pos is a full universal and pure
existential doctrine. In particular, for every function f : X → Y , the morphism ∀f : M(X) →
M(Y ) sending an element ϕ ∈ M(X) to the element ∀f (ϕ) ∈ M(Y ) defined as

∀f (ϕ)(y) :=
⋃

x∈f−1(y)

ϕ(x)

is right adjoint to Mf , i.e. ψ ≤M ∀f (ϕ) ⇐⇒ Mf (ψ) ≤M ϕ for any ψ ∈ M(Y ) and
ϕ ∈ M(X).

Similarly, if f is surjective then the assignment

∃f (ϕ)(y) :=
⋂

x∈f−1(y)

ϕ(x)

determines a left adjoint to Mf , i.e. ∃f (ϕ) ≤M ψ ⇐⇒ ϕ ≤M Mf (ψ) for any ψ ∈ M(Y )
and ϕ ∈ M(X).

Proof. This is essentially a definition-chasing exercise. Let us first show that, for every
ψ ∈ M(Y ) and ϕ ∈ M(X), ψ ≤M ∀f (ϕ) ⇐⇒ Mf (ψ) ≤M ϕ. Assume first that the
reduction ψ ≤M ∀f (ϕ) is witnessed by a ∈ A′. The same a witnesses Mf (ψ) ≤M ϕ:
indeed, for every x ∈ X and every a ∈ ϕ(x), we have a ∈ ∀f (ϕ)(f(x)), and therefore

a · a ∈ ψ(f(x)) = Mf (ψ)(x). On the other hand, assume b witnesses Mf (ψ) ≤M ϕ.
For every y ∈ Y , if b ∈ ∀f (ϕ)(y) then b ∈ ϕ(x) for some x ∈ f−1(y). In particular,

b · b ∈ Mf (ψ)(x) = ψ(y), i.e. b witnesses ψ ≤M ∀f (ϕ).
The second part of the statement is proved analogously. Assume first that ∃f (ϕ) ≤M ψ

is witnessed by c. Fix x ∈ X and a ∈ Mf (ψ)(x) = ψ(f(x)). In particular, c·a ∈ ∃f (ϕ)(f(x)),

and hence c·a ∈ ϕ(x). Finally, assume d witnesses ϕ ≤M Mf (ψ), and let y ∈ Y and b ∈ ψ(y).
Since f is surjective, there is x ∈ X s.t. f(x) = y. Moreover, for every x ∈ f−1(y) we have
b ∈ ψ(f(x)) and, hence, d·b ∈ ϕ(x). This implies that d·b ∈

⋂
x∈f−1(y) ϕ(x) = ∃f (ϕ)(y).

The rest of this section is devoted to studying abstract universal properties of Medvedev
doctrines.
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Theorem 4.6 (Medvedev isomorphism). Let M : Setop // Pos be the Medvedev doctrine
for a given PCA A. Then we have the isomorphism of full universal doctrines

M ≡ (AM )∀f .

In particular, for every set X, the map

(f, α) 7→ α ◦ f−1

is a surjective (pre)order homomorphism between ((AM )∀f (X),≤∀f ) and (M(X),≤M).

Proof. Observe that the full universal completion of AM , i.e. the doctrine (AM )∀f , can be
described as follows:

• (AM )∀f (X) = {(f, α) : f : Y → X and α ∈ AM(Y )},
• if f : Y → X, α ∈ AM (Y ), g : Z → X, and β ∈ AM (Z), then

(f, α) ≤∀f (g, β) ⇐⇒ (∃h : Z → Y )((∀z ∈ Z)(g(z) = f ◦ h(z)) and (AM )h(α) ≤dM β).

In other words, (f, α) ≤∀f (g, β) if and only if there are h : Z → Y and a ∈ A such that the
following diagram commutes

Y Z

X

A A

f

α

g

h

β

a

If we define ϕ := α ◦ f−1 and ψ := β ◦ g−1. we obtain the following diagram:

Y Z

X

A A

f

α

g

h

β

ϕ ψ

a

where ϕ and ψ are represented as double arrows to stress the fact that they are maps into
℘(A).

Let us first show that (f, α) ≤∀f (g, β) implies ϕ ≤M ψ. Fix two witnesses h : Z → Y
and a ∈ A′ for (f, α) ≤∀f (g, β) and fix x ∈ X. If x /∈ ran(g) then ψ(x) = ∅, hence there is
nothing to prove. Assume therefore that x ∈ ran(g). By definition, ψ(x) = β(g−1(x)) 6= ∅.
Fix b ∈ ψ(x) and let z ∈ g−1(x) be s.t. β(z) = b. Since (f, α) ≤∀f (g, β), we can write

a · b = a · β(z) = α ◦ h(z) = α(y),

for some y ∈ f−1(x). In particular, α(y) ∈ ϕ(x), and therefore a witnesses ϕ ≤M ψ.
Let us now prove the other direction. Let b ∈ A′ be a witness for ϕ ≤M ψ. Fix z ∈ Z.

Clearly, letting xz := g(z), ψ(xz) 6= ∅. Moreover, ψ(xz) 6= ∅ implies ϕ(xz) = α(f−1(xz)) 6= ∅
(as b · ψ(xz) ⊂ ϕ(xz)). We define h as a choice function that maps z to some y ∈ f−1(xz)
such that α(y) ∈ b · ψ(xz). Observe that h is well-defined as if a ∈ b · ψ(xz) then a = α(y)
for some y ∈ f−1(xz). This also shows that h and b witness (f, α) ≤∀f (g, β).
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Finally, to show that the homomorphism is surjective it is enough to notice that every
ϕ : X → ℘(A) is the image of the pair (πX , πA), where Y := {(x, a) ∈ X × A : a ∈ ϕ(x)},
and πX : Y → X and πA : Y → A are the two projections.

In other words, this shows that the Medvedev doctrine can be obtained as the full
universal completion of a doctrine.

Remark 4.7. Notice that, when we consider a PCA A and the trivial elementary sub-PCA

given by A itself, we have that the Medvedev doctrine M : Setop // Pos can be presented

as the functor obtained by composing the realizability doctrine R : Setop // Pos defined
in Example 3.4 with the op-functor (−)op : Pos → Pos inverting the order of posets.

Since it is known that the fibres of the realizability doctrine have the Heyting structure,
this presentation provides, for example, an abstract explanation of the co-Heyting structure
of the fibres of Medvede doctrines presented in Proposition 4.4.

4.1. Muchnik Doctrines. Using a very similar strategy, we can show that the Muchnik

lattice is isomorphic to the full universal completion of a doctrine. The notion of Muchnik
reducibility dates back formally to 1963 but was probably known earlier, and can be thought
of as the non-uniform version of Medvedev reducibility. More precisely, given two mass
problems P,Q ⊂ N

N, we say that P is Muchnik reducible to Q, and write P ≤w Q, if for
every q ∈ Q there is a functional Φ such that Φ(q) ∈ P . In other words, P ≤w Q if every
element of Q computes some element of P . Muchnik reducibility is sometimes called “weak
reducibility” (which motivates the choice of the symbol ≤w) to contrast with Medvedev
reducibility, sometimes called “strong reducibility” [Hin12].

Similarly to the Medvedev degrees, the Muchnik degrees form a distributive lattice,
where the join and the meet operations are induced by the same operations on subsets of
N
N that induce the join and the meet in the Medvedev degrees. Unlike the Medvedev lattice,

the Muchnik lattice is both a Heyting and a co-Heyting algebra [Hin12, Prop. 4.3 and 4.7].

Definition 4.8 (Muchnik doctrine of singletons). Let A be a PCA and let A
′ be an ele-

mentary sub-PCA. We can define a doctrine Aw : Set
op // Pos mapping a set X to the

set AX of functions from X to A. Given two elements α, β ∈ Aw(X), we define α ≤dw β if

(∀x ∈ X)(∃a ∈ A
′)(a · β(x) = α(x)).

The functor Aw : Set
op // Pos is called Muchnik doctrine of singletons.

Definition 4.9 (Muchnik doctrine). We define theMuchnik doctrine Mw : Set
op // Pos

over Set as follows. For every set X and every pair of functions ϕ,ψ ∈ ℘(A)X , we define

ϕ ≤w ψ : ⇐⇒ (∀x ∈ X)(∀b ∈ ψ(x))(∃a ∈ A
′)(a · b ∈ ϕ(x)).

This preorder induces an equivalence relation on functions in ℘(A)X . The doctrine Mw(X)
is defined as the quotient of ℘(A)X by the equivalence relation generated by ≤w. The
partial order on the equivalence classes [ϕ] is the one induced by ≤w.

Proposition 4.10. For every set X, Mw(X) is both a Heyting and a co-Heyting algebra,
where:

(1) ⊥ := x 7→ A

(2) ⊤ := x 7→ ∅;
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(3) (ϕ ∧ ψ)(x) := {〈p1, a〉 : a ∈ ϕ(x)} ∪ {〈p2, b〉 : b ∈ ψ(x)}, where p1, p2 are two fixed
(different) elements in A

′.
(4) (ϕ ∨ ψ)(x) := {〈a, b〉 : a ∈ ϕ(x) and b ∈ ψ(x)};
(5) (ϕ\ψ)(x) := {c ∈ A : (∀b ∈ ψ(x))(c · b ∈ ϕ(x))}.
(6) (ϕ→ ψ)(x) := {b ∈ ψ(x) : (∀a ∈ A

′)(a · b /∈ ϕ(x))}.

Proof. The points 1-5 can be proved as in the proof of Proposition 4.4, so we only prove
point 6. The argument is a straightforward generalization of [Hin12, Prop. 4.3]. We need
to show that, for every ρ, ρ ≤w ϕ→ ψ ⇐⇒ ϕ ∧ ρ ≤w ψ. Observe that,

ρ ≤w ϕ→ ψ ⇐⇒ (∀x ∈ X)(∀b ∈ (ϕ→ ψ)(x))(∃a ∈ A
′)(a · b ∈ ρ(x))

⇐⇒ (∀x ∈ X)(∀b ∈ ψ(x))((∀a ∈ A
′)(a · b /∈ ϕ(x)) ⇒ (∃b ∈ A

′)(b · b ∈ ρ(x)))

⇐⇒ (∀x ∈ X)(∀b ∈ ψ(x))((∃a ∈ A
′)(a · b ∈ ϕ(x)) ∨ (∃b ∈ A

′)(b · b ∈ ρ(x)))

⇐⇒ (∀x ∈ X)(∀b ∈ ψ(x))(∃c ∈ A
′)((∃a ∈ ϕ(x))(c · b = 〈p1, a〉) ∨ (∃d ∈ ρ(x))(c · b = 〈p2, d〉))

⇐⇒ (∀x ∈ X)(∀b ∈ ψ(x))(∃c ∈ A
′)(c · b ∈ ϕ ∧ ρ(x))

⇐⇒ ϕ ∧ ρ ≤w ψ.

It is straightforward to adapt the proof of Theorem 4.6 to show the following:

Theorem 4.11 (Muchnik isomorphism). The Muchnik doctrine Mw is isomorphic to the

full universal completion (Aw)
∀f .

Observe that the Medvedev doctrine of singletons AM : Setop // Pos in Definition 4.2

can be embedded in the Muchnik doctrine of singletons Aw : Set
op // Pos as in Definition 4.8.

Let us denote such a morphism of doctrines by I : AM → Aw. By Theorem 3.7 we can em-
ploy the universal property of the full universal completion. Thus we conclude the following
corollary.

Corollary 4.12. Let A be a given PCA and let A′ be an elementary sub-PCA. Then there
exists a morphism of full universal doctrines such that the diagram

M

��✤
✤

✤

✤

AM

η
∀f

AM

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

I

// Aw
η
∀f

Aw

// Mw

commutes.

This corollary is the categorical version of how Medvedev (strong) reducibility is the
uniform version of Muchnik (weak) reducibility.

5. Weihrauch Doctrines

Weihrauch degrees are important because multi-valued functions on represented spaces can
be considered as realizers of mathematical theorems in a very natural way, and studying the
Weihrauch reductions between theorems is like asking which theorems can be transformed
continuously or computably into another, as explained in [BG11]. This provides a purely
topological or computational approach to metamathematics that sheds new light on the
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nature of theorems. Hence it is natural to ask whether, with a similar approach as the one
from the last section, we can also describe Weihrauch reducibility as the completion of some
existential doctrine.

Weihrauch reducibility is a notion of reducibility on multi-valued functions on repre-
sented spaces. This reducibility is useful to study the uniform computational strength of
problems. While Weihrauch reducibility is often introduced in the context of Type-2 com-
putability, we will introduce it in the more general context of PCAs, as we did for the
Medvedev reducibility relation.
If X,Y,Z,W are in Mod(A,A′) and f :⊆ X ⇒ Y , g :⊆ Z ⇒ W are partial multi-valued
functions, we say that f is Weihrauch reducible to g, and write f ≤W g, if there are two
morphisms of modest sets (i.e. two computable functionals) Φ,Ψ ∈ A′ s.t.

(∀p ∈ dom(f ◦ δX))(∀G ⊢ g)((p 7→ Ψ(p,GΦ(p))) ⊢ f),

where G ⊢ g means that G is a realizer of g (as defined in 2.8).
We can rephrase the definition of Weihrauch reducibility without explicitly2 mentioning

the realizers as follows:

(∀p ∈ dom(f ◦ δX))(Φ(p) ∈ dom(g ◦ δZ) ∧ (∀q ∈ g ◦ δZ(Φ(p)))(Ψ(p, q) ∈ f ◦ δX(p))).

Remark 5.1. Observe that, if we are only interested in studying the degree structure
induced by Weihrauch reducibility, we can restrict our attention to functions of the type
f : X ⇒ A, i.e. f : X → ℘(A) such that f(x) 6= ∅ for every X. Indeed, f :⊆ X ⇒ Y is
Weihrauch-equivalent to f ′ : dom(f) ⇒ A defined as f ′(x) := δ−1

Y (f(x)) = {a ∈ A : δY (a) ∈
f(x)}.

Notice that, by restricting our attention to total multi-valued functions, if f ≤W g is
witnessed by the functionals Φ,Ψ as above, we can always assume that δ−1

X (X) ⊂ dom(Φ).
For our purposes, it is convenient to rewrite the definition of Weihrauch reducibility in the
following (equivalent) form.

Definition 5.2 (Weihrauch reducibility relation). Let (X, δX ) and (Z, δZ) be in Mod(A,A′).
Given two multi-valued functions f : X → ℘∗(A) and g : Z → ℘∗(A) then f ≤W g if and
only if there is a morphism k : X → Z of modest sets and an element a ∈ A′ s.t.

(∀p ∈ dom(δX))(∀q ∈ g ◦ k ◦ δX(p))(a · 〈p, q〉 ∈ f ◦ δX(p)).

We want to generalize this definition similarly to what we did for the Medvedev re-
ducibility. To this end, we introduce the following doctrine.

Definition 5.3 (elementary Weihrauch doctrine). Let A be a PCA and A
′ ⊂ A be an ele-

mentary sub-PCA of A. We define the elementary Weihrauch doctrine eW : Mod(A,A′)op // Pos

as follows: for every modest set (X, δX ) and every pair of functions f, g in ℘∗(A)X , we define

f ≤dW g : ⇐⇒ (∃a ∈ A
′)(∀p ∈ dom(δX))(∀q ∈ g ◦ δX(p))(a · 〈p, q〉 ∈ f ◦ δX(p))).

This preorder induces an equivalence relation on functions in ℘∗(A)X . The doctrine
eW(X, δX) is defined as the quotient of ℘∗(A)X by the equivalence relation generated by
≤dW. The partial order on the equivalence class [f ] is the one induced by ≤dW.

2The existence of a realizer for every multi-valued function depends on a (relatively) weak form of the
axiom of choice.
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Notice that following the same ideas used to prove Proposition 4.5, we can prove the
following proposition:

Proposition 5.4. The elementary Weihrauch doctrine eW : Mod(A,A′)op // Pos is a

pure universal and pure existential doctrine. In particular, for every projection πY : X ×
Y → Y of modest sets, the morphism ∀πY : eW(X × Y ) → eW(Y ) sending an element
f ∈ eW(X × Y ) to the element ∀πY (f) ∈ eW(Y ) defined as

∀πY (f)(y) :=
⋃

x∈X

f(x, y)

is right adjoint to eWπY , i.e. g ≤dW ∀πY (f) ⇐⇒ eWπY (g) ≤dW f for any g ∈ eW(Y ) and
f ∈ eW(X × Y ).

Similarly, the assignment

∃πY (f)(y) :=
⋂

x∈X

f(x, y)

determines a left adjoint to eWπY , i.e. ∃πY (f) ≤dW g ⇐⇒ f ≤dW eWπY (g) for any
g ∈ eW(Y ) and f ∈ eW(X × Y ).

Now we introduce the Weihrauch doctrine. For this, we introduce first the notion of
generalized Weihrauch predicate on a modest set.

Definition 5.5 (Weihrauch predicate). Let (X, δX ) be a modest set. A generalized

Weihrauch predicate on (X, δX ) is a function

F : X → ℘∗(A)Y

for some modest set (Y, δY ).

Given a generalized Weihrauch predicate F , we denote by Fx : Y → ℘∗(A) the function
F (x). Moreover, with a small abuse of notation we write F (x, y) for F (x)(y).

Definition 5.6 (Weihrauch doctrine). Given a PCA A with elementary sub-PCA A′, the

Weihrauch doctrine is the functor W : Mod(A,A′)op // Pos that maps a modest set

(X, δX ) to the preorder W(X, δX ) defined as follows:

• objects are generalized Weihrauch predicates on (X, δX );
• the partial order is given by the poset reflection of the preorder defined as follows: let
(Y, δY ) and (Z, δZ) be modest sets. For every F : X → ℘∗(A)Y and G : X → ℘∗(A)Z , we
say that F ≤W G if there exist a morphism of modest sets k : X × Y → Z and a ∈ A′

such that

(∀p ∈ dom(δX×Y ))(∀q ∈ G ◦ 〈πX , k〉 ◦ δX×Y (p))(a · 〈p, q〉 ∈ F ◦ δX×Y (p)).

In other words, if F and G are generalized Weihrauch predicates, the reduction F ≤W G
can be seen as a uniform sequence of Weihrauch reductions, one for each x ∈ X, all witnessed
by the same reduction functionals. This observation makes the following result apparent.

Theorem 5.7 (Weihrauch lattice). Let (A,A′) = (NN,NN

eff) be Kleene’s second model. The
Weihrauch lattice is isomorphic to W(1).

Proof. By definition of Weihrauch doctrine, the objects of the poset W(1) can be identified
with functions Y → ℘∗(A). Morever, if F : Y → ℘∗(A) and G : Z → ℘∗(A) are in W(1)
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then F ≤W G iff there are a morphism k : (Y, δY ) → (Z, δZ) of modest sets and an effective
map a ∈ A

′ such that

(∀p ∈ dom(δY ))(∀q ∈ G ◦ k ◦ δY (p))(a · 〈p, q〉 ∈ F ◦ δX(p)),

which corresponds to Definition 5.2.

Notice that it is direct to check that Weihrauch doctrines are pure existential doctrines
with the following assignment:

Proposition 5.8. The Weihrauch doctrine W : Mod(A,A′)op // Pos is pure existential.

In particular, for every projection πY : X×Y → Y and every generalized Weihrauc predicate
F : X × Y → ℘(A)Z , the predicate ∃πY (F ) is defined as the function

∃πY (F ) : Y → ℘∗(A)(X×Z)

sending an element y ∈ Y into the function ∃πY (F )(y) : X × Z → ℘∗(A) sending (x, z) 7→
F (x, y)(z).

Now we show that the Weihrauch doctrine is isomorphic to the pure existential comple-
tion of the elementary Weihrauch doctrine in Definition 5.3. Recall that, by definition, the
elements of eW∃(X, δX ) are pairs (π, f) where π : (X, δX )×(Y, δY ) → (X, δX ) is a projection
on (X, δX ) in the category Mod(A,A′) and f ∈ eW(X × Y, δX×Y ), i.e. f : X × Y → ℘∗(A).
Moreover,

(π, f) ≤∃ (π′, g) ⇐⇒ (∃k : X × Y → Z)((∀(x, y) ∈ X × Y )(∃z ∈ Z) and f ≤dW eW〈πX ,k〉(g))

Theorem 5.9 (Weihrauch isomorphism). Let A be a PCA and let A′ be an elementary
sub-PCA of A. The Weihrauch doctrine is isomorphic to the pure existential completion of
the elementary Weihrauch doctrine. In symbols:

W ≡ eW
∃.

In particular, for every modest set (X, δX ), the map

(πX , f) 7→ F

where F : X → ℘(A)Y is defined as F (x) := f(x, ·), is a surjective (pre)order homomorphim

between (eW∃(X),≤∃) and (W(X),≤W).

Proof. We first show that the assignment (πX , f) 7→ (y 7→ f(x, y)) preserves the order. Let
(π, f) and (π′, g) be two elements of eW∃(X). By definition, (π, f) ≤∃ (π′, g) if and only if
(∃k : X × Y → Z)((∀(x, y) ∈ X × Y )(∃z ∈ Z) such that f ≤dW eW〈πX ,k〉(g)), i.e.

(∃a ∈ A
′)(∀p ∈ dom(δX×Y ))((∀q ∈ g ◦ 〈πX , k〉 ◦ δX×Y (p))(a · 〈p, q〉 ∈ f ◦ δX×Y (p)). (5.1)

Let F : X → ℘∗(A)Y and G : X → ℘∗(A)Z be the images of (π, f) and (π′, g) respectively.
In particular, F (x) := f(x, ·) and G(x) := g(x, ·). Hence, by substituting F and G in the
equation (5.1), it is straightforward to check that (π, f) ≤∃ (π′, g) iff F ≤W G.

This shows that the embedding preserves and reflects the partial order. Finally, it is
easy to see that the map (πX , f) 7→ F is surjective, since any function H : X → ℘∗(A)V can
be obtained via our embedding as the image of the pair (πX , h), where h : X × V → ℘∗(A)
is defined as h(x, v) := H(x, v).
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Recall by [Hyl88] that the category of modest sets is cartesian closed. Moreover, recall
that the pure existential completion preserves the pure universal structure when the starting
doctrine is universal and the base is cartesian closed (see for example [TSdP21] or [Hof11]).
Therefore, combining these two facts with Theorem 5.9 and Proposition 5.4 we have the
following corollary:

Corollary 5.10. Weihrauch doctrines are pure universal and pure existential doctrines.

Remark 5.11. Notice that the Weihrauch doctrine presented in Definition 5.6 can be
considered in a more general context by replacing the category of modest sets with different
categories, such as the category of assemblies, for example. In particular, by considering
other base categories with suitable morphisms, e.g. continuous functions, we could employ
the same tools used to prove the Weihrauch isomorphism theorem to present, for example,
the continuous version of Weihrauch reducibility (obtained by only requiring that the two
functionals Φ and Ψ are continuous, i.e. computable relatively to some oracle) as the pure
existential completion of a doctrine.

5.1. Strong Weihrauch Doctrines. In this subsection we want to study a variant of the
notion of Weihrauch reducibility, that is, ”strong” Weihrauch reducibility. The procedure
is similar to the one for Medvedev and Weihrauch reducibilities.

We say that f is strongly Weihrauch reducible to g, and write f ≤sW g, if Ψ does
not have direct access to p. In symbols, f ≤sW g if there are Φ,Ψ ∈ A′ such that

(∀p ∈ dom(f ◦ δX))(∀G ⊢ g)((p 7→ ΨGΦ(p)) ⊢ f).

Then we observe that the results of the subsection above can be adapted to show that
the strong Weihrauch degrees are isomorphic to the pure existential completion of a
doctrine. To this end, we adapt the definition of the Weihrauch doctrine as follows:

Definition 5.12. Given a PCA A with elementary sub-PCA A
′, we define the elementary

strong Weihrauch doctrine sW : Mod(A,A′)op // Pos as follows. For every modest

set (X, δX ) and every pair of functions f, g ∈ ℘∗(A)X , we define

f ≤dsW g : ⇐⇒ (∃a ∈ A
′)(∀p ∈ dom(δX))(∀q ∈ g ◦ δX(p))(a · q ∈ f ◦ δX(p)),

This preorder induces an equivalence relation on functions in ℘∗(A)X . The doctrine
sW(X) is defined as the quotient of ℘∗(A)X by the equivalence relation generated by ≤dsW.
The partial order on the equivalence classes [f ] is the one induced by ≤dsW.

Definition 5.13 (Strong Weihrauch doctrine). Given a PCA A with elementary sub-PCA

A′, the strong Weihrauch doctrine is the functor SW : Mod(A,A′)op // Pos that

maps a modest set (X, δX ) to the preorder SW(X, δX ) defined as follows:

• objects are generalized Weihrauch predicates on (X, δX );
• the partial order is given by the poset reflection of the preorder defined as follows: let
(Y, δY ) and (Z, δZ ) be modest sets. We say that F ≤SW G, where F : X → ℘∗(A)Y and
G : X → ℘∗(A)Z , if there exists a morphism of modest sets k : X × Y → Z and a ∈ A′

such that

(∀p ∈ dom(δX×Y ))(∀q ∈ G ◦ 〈πX , k〉 ◦ δX×Y (p))(ā · q ∈ F ◦ δX×Y (p)).

In light of Theorem 5.7 and Theorem 5.9, the following results are straightforward:
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Theorem 5.14. Let (A,A′) = (NN,NN
eff) be Kleene’s second model. The strong Weihrauch

lattice is isomorphic to SW(1).

Theorem 5.15 (Strong Weihrauch isomorphism). Let A be a PCA and let A′ be an elemen-
tary sub-PCA of A. The strong Weihrauch doctrine is isomorphic to the pure existential
completion of the elementary strong Weihrauch doctrine. In symbols:

SW ≡ sW
∃.

5.2. Extended Weihrauch Reducibility. Now we would like to relate the work of Bauer
in [Bau21] to our notions of doctrines introduced before. Bauer in [Bau21, Def. 3.7] extends
the preorder given by Weihrauch reducibility to a preorder on functions A → ℘℘(A), called
extended Weihrauch predicates. In particular, if f, g are extended Weihrauch predicates, we
say that f is extended-Weihrauch reducible to g, and write f ≤eW g if there are ℓ1, ℓ2 ∈ A

′

such that

• for every r ∈ A s.t. f(r) 6= ∅, ℓ1 · r ↓ and g(ℓ1 · r) 6= ∅;
• for every θ ∈ f(r) there is ξ ∈ g(ℓ1 · r) such that for every s ∈ ξ, ℓ2 · r · s ↓ and ℓ2 · r · s ∈ θ.

Bauer also showed ([Bau21, Prop. 3.9]), that the (classical) Weihrauch degrees embed
properly on the extended-Weihrauch degrees. The definition of extended Weihrauch re-
ducibility can be naturally strengthened by requiring that the map ℓ2 does not have access
to the original input.

Definition 5.16 (extended-strong-Weihrauch reducibility). If f, g are extended Weihrauch
predicates, we say that f is extended-strong-Weihrauch reducible to g, and write f ≤esW g
if there are ℓ1, ℓ2 ∈ A

′ s.t.

• for every r ∈ A s.t. f(r) 6= ∅, ℓ1 · r ↓ and g(ℓ1 · r) 6= ∅;
• for every θ ∈ f(r) there is ξ ∈ g(ℓ1 · r) s.t. for every s ∈ ξ, ℓ2 · s ↓ and ℓ2 · s ∈ θ.

Since the map ℓ2 does not have access to the original input, the definition of extended-
strong-Weihrauch degrees could be given in the more general context of functions X →
℘℘(A).

Observe that the preorder defined by the extended strong Weihrauch reducibility arises
naturally as the full existential completion of the Medvedev doctrine M. To show that, we
first prove that the full existential completion of the M is equivalent to a new doctrine D,
and then we show how to write ≤esW in terms of ≤D.

We define the new doctrine D as D(X) := ℘℘(A)X and

H ≤D K :⇐⇒ (∃a ∈ A)(∀x ∈ X)(∀U ∈ H(x))(∃V ∈ K(x))(a · V ⊂ U)

⇐⇒ (∃a ∈ A)(∃λ :⊆ X ×℘(A) → ℘(A))(∀x ∈ X)(∀U ∈ H(x))(a · λ(x,U) ⊂ U),

where λ is a choice function that maps every pair (x,U) with x ∈ X and U ∈ H(x) to some
V ∈ K(x).

Lemma 5.17. For every set X, the map

(f, ϕ) 7→ ϕ ◦ f−1

is a surjective (pre)order homomorphism between (M∃f (X),≤∃f ) and the preorder (D(X),≤D

) defined above
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Proof. Fix (f, ϕ), (g, ψ) ∈ M∃f (X), with ϕ ∈ ℘(A)Y and ψ ∈ ℘(A)Z , and defineH := ϕ◦f−1

and K := ψ ◦ g−1. We obtain the following diagram:

Y Z

X

A A

f

ϕ

k

g

ψ

HH KK

a

where double and triple arrows represent, respectively, functions into ℘(A) or into ℘℘(A).
Let us first show that (f, ϕ) ≤∃f (g, ψ) implies H ≤D K. Fix k : Y → Z and a ∈ A

witnessing (f, ϕ) ≤∃f (g, ψ). Let c :⊆ X ×℘(A) → Y be a choice function that maps every
pair (x,U) with x ∈ X and U in H(x), to some y ∈ ϕ−1(U). By definition, if U ∈ H(x)
then ϕ−1(U) 6= ∅, hence c is well-defined. Observe also that if y is in ϕ−1(U) then, by
definition of H, f(y) = x. We define λ(x,U) := ψ ◦ k ◦ c(x,U). We claim that a and λ
witness H ≤D K. Indeed, for every x in X and every U in H(x), letting y := c(x,U) we
have

a · λ(x,U) = a · (ψ ◦ k(y)) ⊂ ϕ(y) = U.

On the other hand, if H ≤D K as witnessed by a, λ, then we define k : Y → Z as a
choice function that maps every y in Y to some element in {z ∈ Z : ψ(z) = λ(f(y), ϕ(y))}.
Notice that k is well-defined: indeed, by hypothesis, λ(f(y), ϕ(y)) = V ∈ K(f(y)), where
V = ψ(z) for some z such that g(z) = f(y). This also shows that, for every y ∈ Y ,
f(y) = g(k(y)). To prove that a and k witness (f, ϕ) ≤∃f (g, ψ) it is enough to notice that,
for every y in Y , a · ψ(k(y)) = a · λ(f(y), ϕ(y)) ⊂ ϕ(y).

Theorem 5.18. For every H,K ∈ D(A),

H ≤esW K ⇐⇒ (∃k ∈ A
′)(H ≤D K ◦ k).

Proof. This is immediate by unfolding the definitions. Indeed, if H ≤esW K via ℓ1, ℓ2, then
ℓ2 witnesses the reduction H ≤D K ◦ ℓ1. On the other hand, if H ≤D K ◦Φ via a then the
maps ℓ1 := Φ and ℓ2 := a witness the reduction H ≤esW K.

6. Dialectica Doctrines

Finally, we ready to formally establish a first link between the Dialectica doctrines and
the doctrines for computability presented in the previous sections, employing categorical
universal properties.

Dialectica categories were originally introduced in [dP89] as a categorification of Gödel’s
Dialectica interpretation [GF+86]. Over the years, several authors have noticed some re-
semblance between the structure of Dialectica categories and some known notions of com-
putability. However, despite the outwardly similar appearance, a formal connection between
computability and Dialectica categories has never been proved so far.

Recall from [TSdP22] the following definition of the Dialectica doctrine. This notion is
the proof-irrelevant version of a more general construction in the fibrational setting [Hof11,
TSdP21].
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Dialectica construction. Let P : Cop // Pos be a doctrine whose base category C has

finite products. The dialectica doctrine Dial(P ) : Cop // Pos is defined as the functor

sending:

• an object I into the poset Dial(P )(I) defined as follows:
– objects are quadruples (I, U,X, α) where I, U and X are objects of the base category

C and α ∈ P (I × U ×X);
– partial order: we stipulate that (I, U,X, α) ≤ (I, V, Y, β) if there exists a pair (f0, f1),
where f0 : I × U → V and f1 : I × U × Y → X are morphisms of C such that:

α(i, u, f1(i, u, y)) ≤ β(i, f0(i, u), y).

• an arrow g : J → I into the poset morphismDial(P )(I) → Dial(P )(J) sending a predicate
(I, U,X, α) to the predicate:

(J,U,X,α(g(j), u, x)).

In order to understand the intuition behind the notion of Dialectica doctrine, let us
consider the poset Dial(P )(1): an object of this poset (1, U,X, α) represents a relation

U Xα
p and we have that U Xα

p is less or equal to V Y
β
p when there

exists a witness function f0 : U → V and a counterexample function f1 : U × Y → X,
graphically

U X

V Y

f0

α
p

β
p

f1

such that α(u, f1(u, y)) ⊆ β(f0(u), y).
Now we recall a useful result due to Hofstra [Hof11], who revisited the Dialectica con-

struction and showed that it can be presented as a free construction involving quantifier
completions. The original result was presented in the language of fibrations3, but here we
follow the presentation in [TSdP22] where this theorem is stated in terms of doctrines.

Theorem 6.1 (Hofstra [Hof11]). Let P : Cop // Pos be any doctrine. There is an iso-
morphism

Dial(P ) ∼= (P ∀)
∃

relating the Dialectica construction over P to the pure existential completion of the pure
universal completion of P .

Notice that Theorem 6.1 highlights the universal properties of the Dialectica construc-
tion, providing a useful tool to define new connections between doctrines. We employ this
characterisation to establish relationships between Dialectica doctrines and the doctrines
for computability we discussed already, Medvedev, and Weihrauch.

We start by considering the Medvedev doctrine M : Setop // Pos as presented in
Definition 4.3.

3See also the fibrational setting in [TSdP21].
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Theorem 6.2. Let M : Setop // Pos be the Medvedev doctrine. Then there exists a
morphism of existential and universal doctrines

E : Dial(AM ) → M

such that the diagram

Dial(AM )

AM M

η∃∀
AM

η
∀f

AM

E

commutes.

Proof. By Proposition 4.5 we have that the Medvedev doctrine M : Setop // Pos is full
universal, hence it is in particular universal. Therefore, by the universal properties of the
pure universal completion, we have that there exists a morphism of universal doctrines such
that the diagram

(AM )∀

U

��
✤

✤

✤

✤

AM

η∀
AM

<<②②②②②②②②②②②②

η
∀f

AM

// M

commutes. Now, by Proposition 4.5 we have that M : Setop // Pos is also existential,
hence we can apply the universal property of the pure existential completion completion,
obtaining the existence of an arrow such that

((AM )∀)
∃

E

��✤
✤
✤
✤
✤

(AM )∀

η∀
AM

::✈✈✈✈✈✈✈✈✈✈✈✈✈

U

// M

Employing Theorem 6.1, we have that ((AM )∀)
∃
≡ Dial(AM ), hence, combining the

previous two diagrams, we can conclude that there exists an arrow such that the diagram

Dial(AM )

E

��✤
✤

✤

✤

AM

η∃∀
AM

::✈✈✈✈✈✈✈✈✈✈✈✈✈

η
∀f

AM

// M

commutes.
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Similarly, we can provide a connection with Weihrauch doctrines by employing the
universal property of pure existential and pure universal completions.

Theorem 6.3. Let W : Mod
op // Pos be the Weihrauch doctrine in Definition 5.6. Then

there exists a morphism of existential doctrines

S1 : W → Dial(eW)

and a morphism of existential and universal doctrines

S2 : Dial(eW) → W

such that the diagram

W

eW Dial(eW)

η∃
eW

η∃∀
eW

S1S2

commutes, and such that S2S1
∼= idW.

Remark 6.4. Theorem 6.2 and Theorem 6.3 provide a formal connection between reducibility-
like notions and dialectica interpretation, employing the universal properties of quanti-
fiers completions. In particular, Theorem 6.3 provides a strong connection by showing
that Weihrauch doctrines are full and reflective subdotrines of dialectica doctrines, while
Theorem 6.2 provides a canonical morphism from dialectica doctrines into Medvedev doc-
trines, that is not reflective in general. Notice that this difference is due to the different
nature of Weihrauch and Medvedev doctrines, since one is an instance of pure existential
completion, while the other is an instance of full universal completion.

7. Conclusions

We set out to and managed to categorify the notions of Medvedev, Muchnik and Weihrauch
reducibility.

To show the categorification works, we proved the Medvedev isomorphism theorem, the
Muchnik isomorphism theorem and the Weihrauch isomorphism theorems. We also showed
how the respective Medvedev, Muchnik and Weihrauch doctrines relate to existential and
universal completions. Lastly, using the doctrines quantifier properties, we showed how
the Dialectica doctrine relates to the Medvedev and to the Weihrauch doctrines. This
justifies our claims that bringing categorical tools into computable reducibility relations
clarifies and connects the respective notions of reducibility, strengthening the connections
with realizability theories.

But many questions remain. We would like to be able to introduce Turing reducibility
into this generic picture, if possible. We also would like to understand better whether the
work on choice principles in [BGP21] can be related to the work on choice in existential
completions [MPR17]. Finally Miquel [Miq20] introduced the notion of an implicative

tripos, that is, a tripos associated to an implicative algebra. The notion of implicative
tripos encompasses all realizability triposes, classical realizability triposes, forcing triposes
and so on. It would be good to understand if and how the notions of implicative algebra and
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implicative tripos are related to Weihrauch doctrines. In particular, implicative triposes are
defined over sets. Can we define an implicative-like tripos on the category of modest sets?
If this is the case, does this notion encompass the notion of Weihrauch reducibility?

References

[Bau21] Andrej Bauer. Instance reducibility and Weihrauch degrees. 2021.
[BG11] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak com-

putability. The Journal of Symbolic Logic, 76(1):143–176, mar 2011.
[BGP21] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch Complexity in Computable Analysis,

pages 367–417. Springer International Publishing, Jul 2021.
[Bie08] B. Biering. Dialectica interpretations – a categorical analysis (PhD Thesis), 2008.
[dP89] V. de Paiva. The Dialectica categories. Categories in Computer Science and Logic, 92:47–62, 1989.
[dPdS21] Valeria de Paiva and Samuel G. da Silva. Kolmogorov-veloso problems and dialectica categories,

2021.
[Fef75] S. Feferman. A language and axioms for explicit mathematics, page 87–139. Springer-Verlag, 11

1975.
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