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Abstract

Constructive modal logics come in several different
flavours and constructive description logics, while
much more recent and less studied, not surpris-
ingly, do the same. After all, it is a well-known
result of Schild that description logics are simply
variants of n-ary basic modal logic. There are sev-
eral extensions of classical description logics, with
modalities, temporal assertions, etc. As far as we
know there are no such extensions for construc-
tive description logics. Hence this note is a for-
mal description of the extension of a constructive
description logic cALC [MS08] with contexts as
modalities, as described in [deP03a], following the
blueprint of [WZ99].
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1 Introduction
Description Logics are a knowledge representation formal-
ism, much used in Artificial Intelligence. They are logic-
based formalisms intended for representing knowledge about
concept hierarchies, supplied with effective reasoning pro-
cedures and a declarative semantics. Description logics are
very popular nowadays, perhaps due to their proposed appli-
cations in the Semantic Web. Most uses of description logics
consider classical systems. However, considering versions
of constructive description logics makes sense, both from a
theoretical and from a practical viewpoint, as discussed in
[deP03].

Description logics tend to be bundled in families of logical
systems, depending on which concept constructors you allow
in the logic. Since description logics came into existence as
fragments of first-order logic, chosen to find the best trade-off
possible between expressiveness and tractability of the frag-
ment, several systems were discussed and eventually a taxon-
omy of systems emerged. In this taxonomy, the system called
ALC (for Attributive Language with Complements) has come
to be known as the canonical basic one. As far as constructive
description logics are concerned, Mendler and Scheele have
worked out a very compelling system, which they call cALC
([MS08], based on the constructive modal logic CK[BPR01]).
A different constructive version of ALC, based on the frame-
work for constructive modal logics developed by Simpson in

his phd thesis [Sim95] was developed by Hausler, Rademaker
and de Paiva. Their system, called iALC for Intuitionistic
ALC, was described in [HRP10] and it is the reduced ver-
sion of Braüner and de Paiva’s system of Intuitionistic Hybrid
logic, IHL [BdP06]. The systems cALC and iALC are alter-
native formalizations of constructive description logics, and
the main difference between these systems is whether they
satisfy (or not) distribution of possibility over disjunction.

In this note, we start by recalling the description logic
cALC. We then consider one extra modality on top of cALC,
following the blueprint of [WZ99], and prove decidability of
the resulting system. In previous work [deP03a] one of us
suggested the use of constructive modalities as MacCarthy-
style contexts in AI. On that work, the application envisaged
was constructive modalities for formalising natural language
‘microtheories’ and it was regretted that the system obtained
only described constructive modalities over a propositional
basis. The work in this paper gets closer to the desired ulti-
mate system, as we can now talk about context as a construc-
tive modality over a constructive description logic basis. But
most of the hard work is still to be done, as it concerns the
interactions of the finite (but very large) collection of linguis-
tics based contexts/modalities. Here we briefly discuss this as
future work.

2 Constructive description logic cALC

The basic building blocks of description logics are con-
cepts, roles and individuals. We think of concepts as unary
predicates in usual first-order logic and of roles as binary
predicates, used to modify the concepts. Like classical
ALC [DL03] the intuitionistic version cALC is a basic de-
scription language whose concept constructors are described
by the following grammar:

C, D ::= A | ⊥ | ⊤ | ¬C | C ⊓D | C $D | C ⊑ D |

∃R.C | ∀R.C

where A stands for an atomic concept and R for an atomic
role. Note however that as in [MS08] we treat ⊑ as a concept
forming operator, unlike in ALC. In the classical setting, C ⊑
D would have been definable as ¬C $ D, but we are in the
constructive setting and connectives are not interdefinable.

Following Mendler and Scheele we say a constructive in-
terpretation of cALC is a structure I = (∆I ,≼I ,⊥I , ·I)
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consisting of a non-empty set ∆I of entities in which each
entity represents a partially defined individual; a refinement
pre-ordering ≼I on ∆I , i.e., a reflexive and transitive rela-
tion; ⊥I is a subset of fallible entities satisfying ⊥ (fallible
entities are over-defined and hence self-contradictory. This
set is closed under refinement, that is, x ∈ ⊥I and x ≼I y
implies y ∈ ⊥I); and an interpretation function ·I mapping
each role name R to a binary relation RI ⊆ ∆I × ∆I and
each atomic concept A to a set AI ⊆ ∆I which is closed
under refinement, i.e., x ∈ AI and x ≼I y implies y ∈ AI .
The interpretation I is lifted from atomic ⊥, A to arbitrary
concepts, where ∆I

c =df ∆I \ ⊥I is the set of non-fallible
elements, via:

⊤I =df ∆I

(¬C)I =df {x|∀y ∈ ∆I

c .x ≼ y ⇒ y ̸∈ CI}

(C ⊓D)I =df CI ∩DI

(C $D)I =df CI ∪DI

(C ⊑ D)I =df {x|∀y ∈ ∆I

c .(x ≼ y and y ∈ CI)⇒

y ∈ DI}

(∃R.C)I =df {x|∀y ∈ ∆I

c .x ≼ y ⇒

∃z ∈ ∆I .(y, z) ∈ RI and z ∈ CI}

(∀R.C)I =df {x|∀y ∈ ∆I

c .x ≼ y ⇒

∀z ∈ ∆I .(y, z) ∈ RI ⇒ z ∈ CI}

Semantic validity can be introduced as follows: say “x sat-
isfies C in the interpretation I”, written as I, x |= C, if x is
in the interpretation of C, x ∈ CI . Say I |= C if this hap-
pens for all x in ∆I . Finally say |= C if for all interpretations
I we have I |= C. These definitions are usually extended to
sets of concepts.

Typical reasoning in description logics is done via TBoxes
and ABoxes. If we use Θ for a TBox, i.e., a collection of
concepts and subsumptions1 and Γ for an ABox, a collection
of instantiations of concepts then we can say Θ,Γ |= C if for
all interpretations I, which are models of all the concepts in
Θ it is the case that every x in I which satisfy the axioms in
Γ must also satisfy C, or

∀I.∀x ∈ ∆I .(I |= Θ and I, x |= Γ) implies I, x |= C

Note that if we only consider TBox reasoning, that is if the
ABox is empty, the definition above gives Θ, ∅ |= C iff

∀I.∀x ∈ ∆I . I |= Θ implies I, x |= C

A Hilbert-style axiomatization of TBox reasoning in cALC
consists of the axioms and rules given in Figure 1. We denote
derivability in this caclulus as ⊢H .

Mendler and Scheele([MS08] p.7) proved:

Theorem 1 (Mendler-Scheele). The Hilbert calculus given
in Figure 1 is sound and complete for TBox reasoning, that is
Θ, ∅ |= C if and only if Θ ⊢H C.

1This is a somewhat non-traditional usage, since usually a TBox
would contain subsumptions, rather than concepts. However recall
that following [MS08], we express subsumptions as concepts.

(⊑1) C ⊑ (D ⊑ C)

(⊑2) (C ⊑ (D ⊑ E)) ⊑ ((C ⊑ D) ⊑ (C ⊑ E))

(⊓1) C ⊓D ⊑ C

(⊓2) C ⊓D ⊑ D

(⊓3) C ⊑ (D ⊑ (C ⊓D))

($1) C ⊑ C $D

($2) D ⊑ C $D

($3) (C ⊑ E) ⊑ ((D ⊑ E) ⊑ (C $D ⊑ E))

(⊥) ⊥ ⊑ C

(∀K) ∀R.(C ⊑ D) ⊑ (∀R.C ⊑ ∀R.D)

(∃K) ∀R.(C ⊑ D) ⊑ (∃R.C ⊑ ∃R.D)

(Nec) If ⊢H C then ⊢H ∀R.C

(MP ) If ⊢H C and ⊢H C ⊑ D, then ⊢H D

Figure 1: The System cALC: Hilbert-style

A sequent calculus version of cALC is given by Mendler
and Scheele, who also prove cut-elimination for their calcu-
lus. But their calculus is a a tableau style calculus with pos-
itive and negative information about concepts and a simpler
one is available, see Figure 2.

Note that our version, which is constructive, has restric-
tions to a single conclusion formula in the rules for subsump-
tion and universal-quantification-role on the right, which are
essential to keep the system intuitionistic. It is reassuring to
see the same rules for roles in Straccia’s 4-valued Descrip-
tion Logic [Str97]. The rules for the propositional connec-
tives (⊓,$) are basically the same as for classical ALC, and
the rules for subsumption⊑ are just the rules for intuitionistic
implication.

The system cALC[MS08] is related to constructive
CK ([BPR01] and [MdP05]) in the same way classical mul-
timodal K is related ALC[Sch91]. In the system cALC, the
classical principles of the excluded middle C $ ¬C = T,
double negation elimination ¬¬C = C and the definitions of
the modalities ∃R.C = ¬∀R.¬C and ∀R.C = ¬∃R.¬C are
no longer tautologies, but simply non-trivial TBox statements
used to axiomatize specific application scenarios.

Soundness and completeness of a sequent calculus ver-
sion of cALCis indicated in page 10 of [MS08], although
not exactly for the sequent calculus we proposed in Figure
2. Our sequents are simpler than theirs, as we do not insist in
carrying negative information along derivations, as they do.
Nonetheless we have:

Theorem 2. The sequent calculus for cALC in Figure 2 and
the Hilbert calculus described in Figure 1 are equivalent. For
any TBox Θ and concept C, we have that Θ, ∅ ⊢H C if and
only if the sequent Θ⇒ C has a derivation using the rules in
Figure 2.

The proof of soundness and completeness of the sequent
calculus for cALC does not come straight from Straccia’s
work, as our rules for roles are the same, but our semantics
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Γ, C ⇒ C,∆ Γ,⊥ ⇒ C,∆

Γ⇒ C,∆ Γ, D ⇒ ∆
⊑-l

Γ, C ⊑ D ⇒ ∆
Γ, C ⇒ D

⊑-r
Γ⇒ C ⊑ D

Γ, C,D ⇒ ∆
⊓-l

Γ, (C ⊓D)⇒ ∆

Γ⇒ C,∆ Γ⇒ D,∆
⊓-r

Γ⇒ (C ⊓D),∆

Γ, C ⇒ ∆ Γ, D ⇒ ∆
$-l

Γ, (C $D) ⇒ ∆

Γ⇒ C, D, ∆
$-r

Γ⇒ (C $D),∆

Γ, C ⇒ ∆
∀-l

Γ, ∀R.C ⇒ ∆
Γ⇒ C

∀-r
Γ⇒ ∀R.C

Γ, C ⇒ ∆
∃-l

Γ, ∃R.C ⇒ ∆

Γ⇒ C,∆
∃-r

Γ⇒ ∃R.C,∆

Figure 2: The System cALC: Sequent calculus

are different. Straccia insists on 4-valuedness, we only want
constructiveness.

Theorem 3. The sequent calculus described in Figure 2 is
sound and complete for TBox reasoning, that is Θ, ∅ |= C if
and only if Θ ⊢S C.

3 Extending cALC

The main idea of the extension of cALCwith a constructive
context operator ✷ from the logic CK [MdP05] is similar
to the approach of Wolter and Zakharyaschev to modaliz-
ing classical description logics. Intuitively, we introduce a
Kripke-style model to interpret the ✷ where each possible
world is a cALC model. We treat cALC formulas as atomic
formulas of the extended logic cALC✷.

If φat is a formula of cALC, then formulas of cALC✷are
defined as follows:

φ ::= ⊤ | ⊥ | φat | ✷φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ

The logic CK (see for example [MdP05]) is interpreted on
models (W,≤, R, I) where W is a non-empty set of possible
worlds, ≤ is a reflexive transitive binary relation on W , R
is an arbitrary binary relation on W , and I is an interpreta-
tion function (pI is a subset of W satisfying p). Inconsistent
worlds are allowed, namely ⊥I is not necessarily empty, so
we have fallible worlds. The conditions on models are as fol-
lows:

• ≤ is hereditary with respect to atomic formulas, that is
for every atomic p, if w ∈ pI and w ≤ w′, then w′ ∈ pI

In particular, if w ∈ ⊥I and w ≤ w′, then w′ ∈ ⊥I .

• if w ∈ ⊥I , then w ∈ pI for every atomic p.

A model of cALC✷, M, is a CK-model (W,≤, R, I)
where in addition each W is a cALC model and for every

formula φat of cALC, w ∈ (φat)
I

iff w |= φat.

Definition 1 (satisfaction in M). The relation “the cALC✷-
model M and the world w ∈ W satisfy a formula φ” (in
symbols M, w |= φ) is defined inductively as follows:

M, w |= φat iff w ∈ (φat)
I

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= φ → ψ iff for all w′ with w ≤ w′ if M, w′ |= φ,
then M, w′ |= ψ

M, w |= ✷φ iff for all w′ with w ≤ w′ , ∀u(R(w′, u) ⇒
M, u |= φ)

Theorem 4. Satisfiability for cALC✷is decidable.

Proof sketch. The decision procedure builds on decidabil-
ity results for cALC [MS08] and CK [MdP05], respectively.
We formulate the procedure as a non-deterministic algorithm
(guess a model and check that it is indeed a satisfying model)
but it can also be described as a deterministic algorithm work-
ing by exhaustive enumeration of all models of fixed bounded
size.

Given a formula φ of cALC✷, we first use the result from
[MS08] to guess a bounded size CK model M for φ (ignoring
the extra conditions for the cALC✷models). Note that for
each world of M , by construction from [MdP05], only the
interpretation of subformulas of φ in M matters. Let us call
this set of subformulas Sf(φ). Note that Sf(φ) is finite. Now

ARCOE-11 Workshop Notes

18



we check, for each world w of M , whether the set {φat :
M,w |= φat and φat ∈ Sf(φ)} has a cALC model. By
the result of [MS08], this is decidable. If every world in M
has a corresponding cALC model, we are done: we found a
cALC✷model for φ. ✷

Having obtained decidability for cALC✷we conjecture that
the system can be extended with many non-interacting boxes,
to provide a system cALCctx for Artificial Intelligence con-
texts, the application to Natural Language semantics that we
are after, which is briefly described below.

In a series of papers ([deP05],[Bal07],[Bal07a]) the PARC
team has described a formalization of the semantics produced
by their system Bridge, that automatically creates seman-
tics for natural language sentences from the sentences them-
selves, using symbolic and statistical methods. The logic that
emerges from their representations (which they called TIL for
textual inference logic) is a description logic of concepts and
contexts, determined by the lexical semantics of the words
used. Their description corresponds intuitively to a system of
constructive description logic, where the linguistic contexts
are induced by intensional concepts, such as propositional at-
titude verbs and negations. For a trivial example consider the
sentence Ed knew that he closed the door, in the logic TIL the
representation of this sentence will have two contexts, one
corresponding to the world of the things that Ed knew, one
corresponding to how the author of the sentence conceives the
real world to be. These linguistically induced contexts were
also called ‘microtheories’, by analogy to CYC’s contexts,
which correspond to first-order logic theories. The work in
this paper started from a desire to give a firm logical footing
to the system TIL.

However, the PARC team also did some work in the in-
teractions amongst their linguistic contexts [NCK06]. The
ultimate goal of the research reported in this paper is to for-
malize that latter work on linguistics contexts interaction. As
discussed by Nairn et al these interactions are predictable, but
not trivial to formalize. Much work remains to be done to-
wards this goal and we are barely starting it. However, it
must be noted that we do not envisage adding any work along
the lines of the work of Klarman and Gutierrez [KG10]. De-
spite the superficial similarity between our paper and their
work (both papers add contexts MacCarthy-style to the de-
scription logic ALC), the resulting systems are very differ-
ent. First because what we take as contexts MacCarthy-style
is different and secondly because of our commitment to make
our logic constructive, both in the basis and in the context
structure over it. It is hoped that the constructivity of the
logic will ‘pay’ for itself via the usefulness of the Curry-
Howard correspondence, as argued, inter alia, by Mendler
and Scheele [MS08].

4 Conclusions

We extended the constructive description logic cALC with a
modality box operator and proved that the resulting logic is
decidable. This extension is motivated by a proposed applica-
tion to modelling contexts in AI, as described, in the propo-
sitional setting, in [deP03a]. Much remains to be done, in
particular we want to investigate the complexity price of con-

structivity in our setting and we also must check the adapta-
tion needs of our application.
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