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Abstract

This paper describes a fibrational categorical semantics for the modal necessity-only fragment of constructive
modal type theory, both with and without dependent types. Constructive type theory does not usually
discuss logical modalities, and modalities tend to be mostly studied within classical logic, not within type
theory. But modalities should be very useful in type theory, as they are very useful in modelling theoretical
computing systems. Providing constructive versions of modal logics and their associated Curry-Howard
modal type theories is also a very productive program, e.g. helpful when dealing with computational
effects, staged computation, and functional reactive types, for example. There seems to be renewed interest
in the notion of constructive modal type theory (and in notions of linear type theory), in part because of the
interest in homotopy type theory. The modal type theory presented here uses dependent types, in the style of
Ritter’s categorical models of the Calculus of Constructions. To build up to these, we first discuss the kinds
of constructive modal type theory in the literature. Then we provide a non-dependent modal type theory,
introduced in previous work, that we generalize to dependent types in the following section. Dependent
type theories are usually but not always given categorical semantics in terms of fibrations. We provide
semantics in terms of fibrations for both the non-dependent and the dependent type systems discussed and
prove them sound and complete, thereby providing evidence that the type theory is meaningful. These
fibrational models should be also applicable to the homotopy type theory setting.
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1 Introduction

Modal logic is the formal logic system that extends propositional (or predicate) logic

to include operators expressing modality, mostly intensional notions of possibility

and necessity, but also temporal, deontic, provability and other kinds of modalities.

1 We would like to thank the editors Mário Benevides and René Thiemann for their patience beyond the
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Modal logic, originally conceived as the logic of necessity and possibility, has evolved

into a mathematical discipline of its own that deals with (restricted) description

languages for talking about various kinds of relational structures.

Modal logic is the explicit logical system most used in Computer Science, but

almost all of its uses are based on classical modal logic, that is on modal logic over

a classical propositional logic basis, while in this paper we deal with constructive

modal logic. Constructive (or intuitionistic, we will use the terms interchangebly)

modal logic starts from an intuitionistic propositional basis and add modalities to

it. This process, like any of ‘constructivizing’ a logical system, is usually a one-to-

many one, with a single classical concept giving rise to many possible constructive

versions, which one needs to compare, contrast and choose from. All kinds of

mathematical, philosophical and esthetical criteria can be used for choosing your

favorite constructive version of a classical concept.

The basic unary (1-place) modal operators are usually written � for necessarily

the case and � for it is possibly the case. In a classical modal logic, each of these

operators can be expressed using the other using negation: �P ↔ ¬�¬P ; �P ↔
¬�¬P . In the case of constructive modal logics this interdefinability of the operators

is not expected nor desired. The same way as we do not have in intuitionistic

logic the interdefinability between universal and existential quantifiers ∀x.P (x) ↔
¬∃x¬P (x), ∃x.P (x) ↔ ¬∀x¬P (x) we do not expect it as far as the modalities are

concerned.

Some times different methods of constructivization in logic led researchers to the

same systems. In particular the work of Fitch [18], Fisher-Servi [17], Ewald [15],

Plotkin and Stirling and especially Simpson [29] has resulted in the most well-known

and successful systems of intuitionistic modal logic, based on the system IK. Simp-

son’s systems use a labelled deduction method, where the semantic intuitions of

possible worlds are codified in the syntax, via assertions about accessibility between

worlds. Following a very different path Prawitz also provided intuitionistic versions

for systems S4 and S5 in his seminal work in Natural Deduction [26]. This work

gave rise to a collection of associated work, especially on intuitionistic versions of

S4, [8,7,16,2], where the guiding intuitions come from the Curry-Howard correspon-

dence. These systems are here dubbed the systems CS4, for constructive modal

logic.

Some of the research on these constructive modal systems based on Prawitz-

style Natural Deduction were inspired by Girard’s Linear Logic and these benefit

from later developments in linear lambda calculi, such as the Dual Intuitionistic

and Linear lambda-calculus (DILL) [4] of Barber and Plotkin. Our previous work

on constructive modal logic provides a Dual Intuitionistic Modal lambda-calculus

(DIML) [19] in the style of DILL. Since the work on DIML was basically motivated

by the implementation of functional languages using categorical combinators, the

main work on the DIML calculus was to make sure that the explicit substitutions

necessary for the implementation of the categorical combinators worked. But we

also presented the basics of the constructive modal type theory for necessity-only

S4, which we reproduce in the next section.
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The main goal of this paper is to show a fibrational categorical semantics for this

constructive modal type theory and to extend it with dependent boxes. We have

known about this fibrational categorical semantics for a while, but it has remained

in our “to think about” folder of ideas, as we had no compelling application for

it. Now there seems to be renewed interest in the notions of constructive modal

type theory and linear type theory, in part caused by the interest in homotopy type

theory [30]. Thus it seems a good idea to write up how to integrate S4 box-only

modalities with dependent types, making the boxes dependent constructors.

2 Modal Type Theories

The somewhat outdated survey [12] explains that there are several proposals for con-

structive modal logics and associated modal type theories in the literature. They

come from different motivations and intuitions, from logic, mathematics and com-

puter science, drawn from the different backgrounds of their authors.

The pioneering work on constructive modal logics has resulted in the most well-

known and successful systems of intuitionistic modal logic, based on the system

IK of Simpson[29]. Simpson’s systems use a labelled deduction method, where the

semantic intuitions of possible worlds are codified in the syntax, via assertions about

accessibility between worlds.

These systems are to be contrasted with the systems that originated with

Prawitz, who also provided intuitionistic versions for systems S4 and S5 in his

seminal work in Natural Deduction [26]. Prawitz work gave rise to a collection

of associated work, especially on intuitionistic versions of S4, [8,7,16], where the

guiding intuitions come from the Curry-Howard correspondence. These systems are

dubbed the systems CS4, for constructive modal logic. Unlike Simpson’s systems,

these systems do not use information about possible worlds semantics in their syn-

tax, and do not satisfy the distribution of possibility over disjunction, as exemplified

by the implications

�(A ∨B)→�A ∨�B (1)

�⊥→⊥ (2)

The first version of modal type theory we know of is Moggi’s seminal work on the

Computational Lambda-calculus [24], explained by [7], [21] as a rather degenerate

modal type theory. There is the doctoral work of Borghuis [9] which presents a

classical modal theory on top of Barendregt’s cube. Borghuis uses Fitch’s variant

of Natural Deduction, which is equivalent to Gentzen-Prawitz Natural deduction

for first-order classical logic. But the modal type theory he considers is classical,

the modalities are interdefinable, which does not make much sense, if the goal is

obtaining a Curry-Howard correspondence.

There is also the highly influential work on modal type theory of Frank Pfenning

and collaborators [25,11], following the Curry-Howard correspondence for construc-

tive S4 and Martin-Löf’s methodology of distinguishing judgements from proposi-

tions. This work, contrary to [8,7] has not, by and large, being concerned with
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categorical semantics. In the next section we describe a system that like [8] has its

origins in Prawitz work, and takes as guiding intuition the categorical modelling of

the Curry-Howard correspondence in the style of [6]. Thus we think of modal sys-

tems as defined on the same level as their intuitionistic counterparts. Our original

motivation was the re-use of the machinery dealing with reduction of the simply

typed lambda-calculus.

3 Dual Intuitionistic Modal Logic (DIML)

We recall the proof system for constructive necessity called Dual Intuitionistic Modal

Logic (DIML) introduced in our previous work [19] which is based upon Barber (and

Plotkin’s) Dual Intuitionistic Linear Logic (DILL) [4]. The original system DILL

manages to keep reduction systems for intuitionistic propositional and intuitionistic

linear logic, side-by-side, by making use of a direct “translation” to logic of its

proposed categorical semantics. The modal system DIML does the same for a

necessity modality in intuitionistic logic. Note that despite the fact that we are

calling it a logic, the system is a type theory that is Curry-Howard correspondent

to the logic, that is, if we erase the terms, we end up with a Natural Deduction

formulation of the logic. We recap the details of the type theory, as generalizing it

to dependent types is our main goal.

3.1 The Typing Judgements of DIML

The types of DIML are ground types, function types A → B and box-types �A.

Variables are tagged xM or xI to indicate whether they are modal or intuitionistic

and the raw expressions of DIML are

t ::= xM | xI | λx : A.t | tt
| �t | let t be �x in t

where the x’s are variables. (The tags on variables are sometimes omitted to increase

legibility.)

We identify α-equivalent terms. A context is a sequence of the form

x1 : A1, . . . , xn : An where the x’s are distinct variables and the A’s are types. A

DIML context consists of two contexts Γ and Δ containing disjoint sets of variables

and is written Γ|Δ. We call the variables in Γ modal variables and the variables in

Δ intuitionistic variables.

The typing judgements of DIML are of the form Γ|Δ � t : A and are generated

by the inference rules in Figure 1. These are the rules for the simply typed lambda-

calculus plus an introduction and elimination rule for the � modality. Note that

the introduction of a necessary � type requires an empty intuitionistic context,

corresponding to the intuitive idea that we can say a proposition is necessary, if all

the assumptions it depends on are already necessary, i.e. the set of non-necessarily-

modal assumptions (its intuitionistic context) is empty. The elimination rule for
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the � modality is usual, following Schroeder-Heister’s style of elimination rules.

Weakening for both kinds of variables is admissible because of the typing rule

for these variables. Contraction of both kinds of variables follows from the additive

way contexts are combined. Exchange is also admissible. Note that we could also

have rules for logical conjunctions and disjunctions, but we prefer to concentrate on

the essential connectives implication and modality.

Γ, x : A,Γ′|Δ � xM : A Γ|Δ, x : A,Δ′ � xI : A

Γ|Δ, x : A � t : B

Γ|Δ � λx : A.t : A → B
(→ I)

Γ|Δ � t : A → B Γ|Δ � u : A

Γ|Δ � tu : B
(→ E)

Γ| � t : A

Γ|Δ � �t : �A
(�I)

Γ|Δ � ti : �Ai Γ, x : A|Δ � u : B

Γ|Δ � let t be �x in u : B
(�E)

Γ|Δ, x : A � t : B Γ|Δ � u : A

Γ|Δ � (λx : A.t)u = t[u/x] : B

Γ|Δ � t : A → B

Γ|Δ � λx : A.tx = t : A → B
(x 	∈ FV (t))

Γ| � t : A Γ, x : A|Δ, y : B � C

Γ|Δ � let �t be �x in u = u[t/x] : C

ΓΔ � t : �A Γ|Δ, y : �A � t′ : C

Γ|Δ � let t be �x in t′[�(x)/y] = t′[t/y]

Fig. 1. Typing Judgements for DIML (Dual Intuitionistic and Modal Logic)

The more complex nature of contexts in DIML results in a more subtle meta-

theory. Just as there are two rules for typing variables, so there are two substitution

lemmas depending on the nature of the variable being substituted. As we learned

from the linear lambda-calculus we need an appropriate, double substitution lemma,

catering for both kinds of variables, see below. Observe that forgetting about the

terms in the lemma below, we obtain two forms of the cut rule, which we can show

are admissible in DIML.

Lemma 3.1 (Substitution) If Γ|Δ � t : A and Γ|xI : A,Δ � s : B, then Γ|Δ �
s[t/xI ] : B, where [t/xI ] denotes the traditional meta-level substitution. Similarly if

Γ|− � t : A and Γ, xM : A|Δ � s : B then Γ|Δ � s[t/xM ] : B.

We can regard the introduction and elimination rules as being inverse to each

other and hence derive a β and an η-equality judgement for each type constructor.

This then leads to a full Curry-Howard correspondence for DIML, which can be
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showed equivalent to the type theory in [8] and thence to the axiomatic definition

of �-only S4, sometimes written as CS4.

Theorem 3.2 There is an axiomatic �-only intuitionistic S4 modal derivation of

Γ → A iff there is a DIML term t and a DIML judgement |Γ � t : A.

Note the empty modal context in |Γ � t : A, modal variables can always be

moved to the intuitionistic part of the context, with the � prefixed to them. The

proof is an easy adaptation of Barber’s proof, so is omitted.

Soundness and completeness theorems for �-only constructive S4, as proved in

[8] are available, both via the translation between DIML and CS4 and directly,

as below. We do not expand on these remarks but instead move on directly to

reduction in the type theory DIML.

3.2 The reduction calculus for DIML

Reduction in DIML consists only of β-redexes and is the least congruence on raw

expressions containing the basic reductions

(λx : A.t)u ⇒ t[u/x]

let �u be �y, in s ⇒ s[u/y]

Two terms t and u which are equivalent in the equational theory generated by

the DIML reduction relation are called DIML equivalent and this is written t ∼= u.

Subject reduction means that typing information is preserved by reduction and now

we consider only those reductions whose redexes are well-typed terms — by subject

reduction the reducts are also well-typed.

Lemma 3.3 (DIML Subject Reduction) If there is a DIML typing judgement

Γ|Δ � t : A and a rewrite t ⇒ t′, then there is also a typing judgement Γ|Δ � t′ : A.

A second key property of DIML reduction is that it is contained within the

equality judgements of DIML.

Lemma 3.4 If Γ|Δ � t : A and t ⇒ u, then there is an equality judgement Γ| Δ �
t = u : A in DIML.

Theorem 3.5 The DIML reduction relation ⇒ is strongly normalising and conflu-

ent.

Proof. Strong normalisation is proved by standard reducibility methods while con-

fluence then follows from local confluence which may easily be checked. �

3.3 DIML Semantics

The presentation of DIML just given is based on typing and equality judgements so

as to make the connection with the semantics as smooth as possible. Our reduction

calculus is designed to model the computational process and so is restricted to only
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the β-redexes for each type constructor, no η conversions. The upshot is a well-

behaved type theory, for which we can provide an operational semantics, if desired.

A traditional 1-categorical semantics for DIML is also easy to state and prove

sound and complete, as the type theory was originally (in the linear logic case [4])

derived from it.

Definition 3.6 We define a DIML category M to be a pair of cartesian closed

categories (S,C), with two symmetric monoidal functors F : C → S and G : S → C

which are adjoint, G 
 F .

The intuition is that S models the modal contexts and modal terms, and C the

intuitionistic contexts and intuitionistic terms. The adjunction is used to model the

�-modality.

Define an interpretation [[ ]] : DIML → M which takes the types and sequents

of DIML (over a basic set of types) to a model M as follows:

[[X]] = I(X) for X a base type

[[A → B]] = [[A]] → [[B]]

[[�A]] = FG([[A]])

We extend this interpretation to contexts (A1, ...An| B1, ...Bn) by adding boxes

to the modal assumptions and defining [[A1, . . . , An| B1, . . . , Bn]] = �[[A1]] × · · · ×
�[[An]]× [[B1]]× · · · × [[Bn]]. The interpretation will take a sequent Γ|Δ � t : A to

an arrow [[Γ|Δ � t : A]] : [[Γ|Δ]] → [[A]] in the DIML category.

The DIML type theory can be soundly interpreted in a DIML category as defined

above.

Theorem 3.7 The type theory DIML has sound models provided by the structures

M defined above. In other words, given a DIML category M, using the above

interpretation, the following hold:

• Assume Γ|Δ � t : A in DIML. Then [[Γ|Δ � t : A]] is a morphism in S with

domain [[Γ|Δ]] and codomain [[A]];

• Assume Γ � t = s : A. Then [[Γ � t : A]] = [[Γ � s : A]].

We also have completeness of DIML categories:

Theorem 3.8 The DIML models are complete in the appropriate sense for the

type theory DIML. This is to say, if we have equality of the interpretations [[Γ �
t : A]] = [[Γ � s : A]] (where [[ ]] is the interpretation defined above) in the DIML

category M for any derived sequents Γ � t : A and Γ � s : A then we can derive the

equation in the type theory DIML Γ � t = s : A.

The proof is mutatis mutandis the one in Barber’s thesis [4]. We construct the

term model and show that the basic rules of the calculus are mapped to appropriate

morphisms using the categorical constructs.

Thus we have a relatively easy model of DIML at hand, however in the next

section we will explain a fibration model for DIML. Why? Why do we embark on
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using fibrations to model this type theory? The reason is that we want to model

modal extensions of Martin-Löf’s dependent type theory (DTT), which will need

the more involved, fibrational categorical semantics. Fortunately one of us wrote a

doctoral thesis [28] on modelling dependent type theories and implementing them

in efficient ways, so most of the work was in place, needing only to be adapted to

the case of necessity-modality constructor.

4 Simple DIML Fibrational Semantics

We can also model the DIML type theory via fibrations, instead of adjunctions.

The usual fibration modelling framework was developed for theories with dependent

types. One can use this framework for modelling theories without dependent types

by imposing a strong restriction, discussed below.

Recall that the basic modelling of dependent types (products and sums) using

fibrations is complicated somewhat by the mismatch between syntax and semantics,

in that substitution in the syntax is “strict”, that is up to syntactic equality, while

substitution in the semantics tends to be modelled “up to isomorphism”. The dis-

cussion in the n-Lab (http://ncatlab.org/nlab/show/categorical+model+of+

dependent+types) explains the existence of several almost equivalent formulations

and some of the pros and cons of each. Jacobs [20] provides a detailed exposition

of dependent type theories and their categorical modelling.

We choose in this paper a formulation based on indexed categories E : Bop →
Cat which models strict substitutions. To model the necessity modality in the de-

pendent setting, we follow the intuitions of our previous work on Linear Logic, more

specifically we follow the work on modelling ILT [23], an intuitionistic linear lambda-

calculus, where linear and intuitionistic implications co-exist. The main point is that

a necessity � modality, like the linear logic bang ! requires proof-theoretically a spe-

cial form of assumptions, these have to be of the form !A. Similarly, to introduce a

modal type �B all its assumptions have to be of the form �Ai.

We first recap the modelling of dependent types using D-categories, then we

restrict ourselves to non-dependent types, but add the necessity modality.

4.1 Dependent Products

To model simply dependent products, a generalisation of function spaces, we use a

variant of Ehrhard’s D-category [14], which goes back to Lawvere’s idea of hyper-

doctrines satisfying the comprehension axiom, see [28] for a fuller explanation.

Here we simply recap the dependent type theory syntax that we want to model

and the choices we have made. The types are ground types and dependent products

Πx : AB. The raw expressions are

A ::= G| Πx : AB

t ::= x| λx : A.t | tt
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where the x’s are variables.

Because types may contain terms, we require typing judgements for all syntactic

categories, namely contexts, types and terms. They are generated by the inference

rules in Figure 2. We have omitted the congruence rules for contexts, types and

terms.

[] � Context

Γ � Context Γ � A Type

Γ, x : A � Context

Γ, xM : A � B Type

Γ � ΠxM : AB Type

Γ, x : A,Γ′ � x : A

Γ, x : A � t : B

Γ � λx : A.t : Πx : AB
(ΠI)

Γ � t : Πx : AB Γ � u : A

Γ � tu : B[u/x]
(ΠE)

Γ, x : A � t : B Γ � u : A

Γ � (λx : A.t)u = t[u/x] : B[u/x]

Γ � t : Πx : AB

Γ � λx : A.tx = t : Πx : AB
(x 	∈ FV (t))

Fig. 2. Typing Judgements for dependent type theory (DTT)

For basic dependent type theory there is only one reduction rule, namely β-

reduction

(λx : A.t)u ⇒ t[u/x] .

Because there is a non-trivial equality between types, showing that the dependent

type theory satisfies standard meta-theoretic results is much harder. In particular,

subject reduction is a non-trivial theorem. As part of the proof one has to show

that two dependent product types Πx : A′B and Πx : A′B′ are equal if and only if A

and A′ and B and B′ are equal. For details see [5].

Lemma 4.1 (DTT Subject Reduction) If there is a typing judgement Γ � t : A

in dependent type theory and a rewrite t ⇒ t′, then there is also a typing judgement

Γ � t′ : A.

Subject reduction is also the key point in showing that reduction in dependent

type theory is contained within the equality judgement.

Lemma 4.2 If Γ � t : A and t ⇒ u, then there is an equality judgement Γ � t =

u : A in dependent type theory.

To model this type theory we have an indexed category E : Bop → Cat where

the base category B models usual contexts Γ. Fibres over an object Γ, E(Γ) model
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terms whose variables are contained in the context modelled by Γ. We need a

terminal object � in B. Each fibre is a cartesian closed category. We also require

that for each morphism f in the base B, E(f) preserves the terminal object. The key

construction of this indexed category is the requirement called the ”comprehension

property”: Substitution of variables is modelled by applying the functor E(f), and

context extension is modelled by comprehension which yields a bijection between a

morphism f : Γ → Γ′ · A in B and a pair consisting of a morphism f : Γ → Γ′ in B
and a morphism g : 1 → f∗A in E(Γ).

A precise definition is as follows:

Definition 4.3 A D-category is an indexed category E : Bop → Cat such that

(i) B has a terminal object �;

(ii) The functor I : B → Gr(E) defined by I(Γ) = (Γ, 1) and I(f) = (f, Id) has a

right adjoint G. We write Γ · A for G((Γ, A)), (Fst, Snd) for the co-unit of this

adjunction, and f · h for G((f, h)).

(iii) For every pair of morphisms g : Γ ·A → Δ ·B and f : Γ → Δ such that Fst ◦ g =

f ◦ Fst there exists a unique morphism h : A → f∗B in E(Γ) such that g = f · h;
(iv) For every object Γ of B and A of E(Γ), the functor Fst∗A : E(Γ) → E(Γ · A) has

a right adjoint ΠA : E(Γ · A) → E(Γ). We will write in the sequel Cur for the

natural isomorphism between HomE(Γ·A)(Fst
∗
A(B), C) and HomE(Γ)(B, ΠA(C))

and App for its counit.

(v) The Beck-Chevalley-condition for the adjunctions Fst∗A 
 ΠA is satisfied in the

strict sense, i.e. the equation f∗(CurA(h)) = CurA((f · Id)∗(h)) holds for every

f : Δ → Γ, A ∈ E(Γ), B ∈ E(Γ ·A) and morphism h : 1 ·B in E(Γ ·A).

Any dependent type theory can be soundly interpreted in a D-category. The

interpretation is defined by induction over the derivation. Variables are interpreted

using the comprehension and dependent products using the right adjunction to

weakening.

Using the meta-theoretic results from dependent type theory one shows that the

interpretation of a judgement is independent of its derivation.

Theorem 4.4 Given a D-category E : Bop → Cat under the above interpretation

[[]] the following facts hold.

(i) Assume Γ � Context. Then [[Γ]] is an object in B;
(ii) Assume Γ � A Type. Then [[Γ � A Type]] is an object in E([[Γ]]);

(iii) Assume Γ � M : A. Then [[Γ � M : A]] is a morphism from 1 to [[A]] in E([[Γ]]);

(iv) Assume � Γ = Δ. Then [[Γ]] = [[Δ]];

(v) Assume Γ � A = B. Then [[Γ � A Type]] = [[Γ � B Type]];

(vi) Assume Γ � M = N : A. Then [[Γ � M : A]] = [[Γ � N : A]].

D-categories are also complete, which can be shown by the usual term model

construction.
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Theorem 4.5 If [[Γ � M : A]] = [[Γ � N : A]] where [[ ]] is the above defined in-

terpretation, for every D-category E : Bop → Cat and for every derived sequents

Γ � M : A and Γ � N : A then we can derive in the type theory Γ � M = N : A.

Both theorems were stated and proved for the Calculus of Constructions, which

is a special case of dependent type theory, in [27]. This proof is modular and

specialises to soundness and completeness of the general dependent type theory.

Moreover, the proof also specialises for the case of non-dependent type theory,

the only modification is to insist that the functor E(f) is the identity on objects of

B.

4.2 Adding a Necessity Modality

When we want to add box modalities to the dependent types we can use the basic

idea of D-categories, but now contexts have two parts (a modal context and an

intuitionistic one) that behave very differently. The basic intuition is to follow

the modelling in [23], where the base category B models terms with only modal

variables as morphisms, and considers modal contexts as objects. Fibres over an

object Γ|Δ model terms with both intuitionistic and modal variables where the

modal variables are contained in the modal context modelled by Γ. Substitution of

modal variables is modelled by applying the functor E(f), and context extension of

modal contexts by comprehension which yields now a bijection between a morphism

f : Γ · A in B and a pair consisting of a morphism f : Γ → Γ′ in B and a morphism

g : Δ → A in E(Γ). This leads us to the following full definition:

Definition 4.6 A fibred DIML-category is an indexed category E : Bop → Cat such

that

(i) B has a terminal object �;

(ii) all fibres are cartesian closed categories and E(f) preserves the cartesian closed

structure on the nose for every morphism f in B;
(iii) Each functor E(f) is the identity on objects;

(iv) The functor I : B → Gr(E) defined by I(Γ) = (Γ, 1) and I(f) = (f, Id) has a

right adjoint G. We write Γ ·A for G((Γ, A)) and (Fst, Snd) for the co-unit of this
adjunction;

(v) For all objects Γ of B the functor Fst∗A : E(Γ) → E(Γ · A) has a left adjoint �A.

If f : B → Fst∗AC is a morphism in E(Γ ·A), we write νA(f) for the morphism in

E(Γ) obtained by transposing f across the adjunction.

(vi) Moreover, the Beck-Chevalley condition for the adjunction �A 
 Fst∗A is satisfied

in the strict sense, i.e. the equations

f∗ ◦�A = �A ◦ (f · Id)∗ f∗(νA(g)) = νA((f · Id)∗(g))

hold for every f : Δ → Γ, B ∈ ObE(Γ), C ∈ ObE(Γ) and g ∈ HomE(Γ.A)(B,C).

Note that since this framework was developed for theories with dependent types,
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to use it for modelling theories without dependent types we impose the restriction

that re-indexing is the identity on objects, condition [(iii)] in the definition above.

5 Dependent Modal Type Theory

Having defined a fibrational semantics for constructive modal type theory where

all the type constructors are simple types, we now want to have modalities that

are themselves dependent types over a system of dependent products. This is the

main innovation of this paper. We are not aware of any other work which described

dependent modalities as these S4 necessity modalities we describe here.

Dependent type theory has a mixed record. In one hand is considered by some

“the modern way of doing first-order logic”, on the other hand is considered by oth-

ers an unintelligible way of extending functional programming. Within functional

programming itself, dependent types have been used in two very different ways as

well explained in [10]: first as case study in theorem proving in constructive logic, as

in Coq, LEGO, Agda, Lean, etc, but also as an extension to already existing and or-

dinary functional language such as Haskell and ML. In the first case non-termination

is forbidden, as it would make the logic inconsistent, while in the second case one

seeks a language for heterogeneous verification, as expressive as possible, allowing

programmers to devote their ‘verification budget’ to critical sections. Such a lan-

guage must support general recursion as natively as any functional programming

language and hence non-termination is not an issue. In this paper we are definitely

in the first camp and want to see what are the mathematical foundations of type

systems that allow for intensional notions of modality (specifically the necessity or

�-like S4 modality) within a dependent type universe. In such universe it makes

more sense for the modality itself to be a dependent type constructor.

The formal development of the type theory is parallel to the non-dependent case.

The raw expressions of the dependent modal type theory are given by

t ::= xM | xI | λx : A.t | tt | �(t, t) | let t be �(xM , xI) in t

where the x’s are variables. (The tags on variables are sometimes omitted to increase

legibility.)

The typing judgements for the dependent modal type theory are in Figure 3. We

have omitted the congruence rules for contexts, types and terms. The important

thing to note is that, given our formulation of box modalities in terms of double

contexts, the generalization of a box to a dependent constructor becomes an easy

step, somewhat reminiscent, in the semantics, of how to deal with strong sums in

traditional Martin-Löf dependent type theory.

Note that non-dependent products, i.e. usual function spaces or logical implica-
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[] � Context

Γ � Context Γ � A Type

Γ, x : A � Context

Γ � A Type Γ � B Type

Γ � A → B Type

Γ, xM : A � B Type

Γ � ΠxM : AB Type

Γ, xM : A � B Type

Γ � �xM : AB Type

Γ, x : A,Γ′|Δ � xM : A Γ|Δ, xI : A,Δ′ � xI : A

Γ|Δ, xI : A � t : B

Γ|Δ � λxI : A.t : A → B
(→ I)

Γ|Δ � t : A → B Γ|Δ � u : A

Γ|Δ � tu : B
(→ E)

Γ, xM : A|Δ � t : B

Γ|Δ � λxM : A.t : Πx : AB
(ΠI)

Γ|Δ � t : Πx : AB Γ| � u : A

Γ|Δ � tu : B[u/xM ]
(ΠE)

Γ| � t : A Γ|Δ � s : B[t/xM ]

Γ|Δ � �(t, s) : �xM : AB
(�I)

Γ|Δ � t : �xM : AB Γ, x : A|Δ, y : B � u : C

Γ|Δ � let t be �(x, y) in u : C

Γ, x : A|Δ � t : B Γ| � u : A

Γ|Δ � (λx : A.t)u = t[u/x] : B[u/x]

Γ|Δ � t : Πx : AB

Γ|Δ � λx : A.tx = t : Πx : AB
(x 	∈ FV (t))

Γ|Δ, x : A � t : B Γ|Δ � u : A

Γ|Δ � (λx : A.t)u = t[u/x] : B

Γ|Δ � t : A → B

Γ|Δ � λx : A.tx = t : A → B
(x 	∈ FV (t))

Γ| � t : A Γ|Δ � s : B[t/xM ] Γ, x : A|Δ, y : B � C

Γ|Δ � let �(t, s) be �(x, y) in u = u[t/x, s/y] : C

Γ|Δ � t : �x : AB Γ|Δ, y : �x : AB � t′ : C

Γ|Δ � let t be �(x, a) in t′[�(x, a)/y] = t′[t/y]

Fig. 3. Typing Judgements for dependent DIML (depDIML)

tions are derivable. The reduction rules of depDIML are as expected

(λxM : A.t)u ⇒ t[u/xM ]

(λxI : A.t)u ⇒ t[u/xI ]

let �(t, u) be �(x, y) in s ⇒ s[t/x, u/y]
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However the meta-theory of dependent type theories is usually very subtle. In

particular subject reduction becomes an important theorem. Luckily we can use

the same methodology that is used to show these theorems for standard dependent

type theory. As before we have two kinds of substitution lemma:

Lemma 5.1 (depDIML Substitution) If Γ|Δ � t : A and Γ|xI : A,Δ � s : B,

then Γ|Δ � s[t/xI ] : B, where [t/xI ] denotes the traditional meta-level substitution.

Similarly if Γ|− � t : A and Γ, xM : A|Δ � s : B then Γ|Δ � s[t/xM ] : B.

Lemma 5.2 (depDIML Subject Reduction) If there is a dependent DIML

typing judgement Γ|Δ � t : A and a rewrite t ⇒ t′, then there is also a typing

judgement Γ|Δ � t′ : A.

Theorem 5.3 The dependent DIML reduction relation ⇒ is strongly normalising

and confluent.

6 Dependent Fibrational Semantics

The hard work done at the beginning now pays off. The framework presented in

Section 4 can be used to model the dependent DIML type theory simply by removing

the restriction that re-indexing is the identity on objects.

Definition 6.1 A fibred dependent DIML-category is an indexed category

E : Bop → Cat such that

(i) B has a terminal object �;

(ii) all fibres are cartesian closed categories and E(f) preserves the cartesian closed

structure on the nose for every morphism f in B;
(iii) The functor I : B → Gr(E) defined by I(Γ) = (Γ, 1) and I(f) = (f, Id) has a

right adjoint G. We write Γ · A for G((Γ, A)), (Fst, Snd) for the co-unit of this

adjunction and pair(f, g) for morphism obtained by transposing (f, g) across the

adjunction.

(iv) For every object Γ of B and A of E(Γ), the functor Fst∗A : E(Γ) → E(Γ · A) has

a right adjoint ΠA : E(Γ · A) → E(Γ). We will write in the sequel Cur for the

natural isomorphism between HomE(Γ·A)(Fst
∗
A(B), C) and HomE(Γ)(B, ΠA(C))

and App for its counit.

(v) The Beck-Chevalley-condition for the adjunctions Fst∗A 
 ΠA is satisfied in the

strict sense, i.e. the equation f∗(CurA(h)) = CurA((f · Id)∗(h)) holds for every

f : Δ → Γ, A ∈ E(Γ), B ∈ E(Γ ·A) and morphism h : 1 ·B in E(Γ ·A).

(vi) For all objects Γ of B the functor Fst∗A : E(Γ) → E(Γ · A) has a left adjoint �A.

If f : B → Fst∗AC is a morphism in E(Γ.A), we write νA(f) for the morphism in

E(Γ) obtained by transposing f across the adjunction.

(vii) Moreover, the Beck-Chevalley condition for the adjunction �A 
 Fst∗A is satisfied

in the strict sense, i.e. the equations

f∗ ◦�A = �A ◦ (f · Id)∗ f∗(νA(g)) = νA((f · Id)∗(g))
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hold for every f : Δ → Γ, B ∈ ObE(Γ), C ∈ ObE(Γ) and g ∈ HomE(Γ.A)(B,C)

Modal variables will be interpreted via the comprehension and intuitionistic

variables by suitable projections in the fibre. The type A → B is interpreted by

the function space in the corresponding fibre, and the dependent product by the

right adjoint to weakening. The �-modality is interpreted by the left adjoint to

weakening. More precisely, the clauses for the �-modality are as follows:

[[Γ| � t : A]] = f [[Γ|Δ � s : B]] = g

[[Γ|Δ � �(t, s)]] = pair(Id, f)∗(ν−1
A (Id) ◦ g)

[[Γ|Δ � t : �x : AB]] = f [[Γ, x : A|Δ, y : B � t : C]] = g

[[Γ|Δ � let t be �(x, y) in s]] = ν−1(g) ◦ 〈f, Id〉

Using this definition and the same method of proof as before we can now state

soundness and completeness of our categorical models. The soundness proof uses a

substitution lemma.

Lemma 6.2(i) Assume [[Γ| � s : A]] = f . Then we have

(i) If Γ, x : A,Γ′|Δ � Context, then also [[Γ,Γ′[s/x]|Δ[s/x] � Context]] = (〈Id, f〉 ·
Id)∗[[Γ, x : A,Γ′|Δ � Context]].

(ii) If Γ, x : A,Γ′|Δ � B Type, then also [[Γ,Γ′[s/x]|Δ[s/x] � B[s/x] Type]] =

(〈Id, f〉 · Id)∗[[Γ, x : A,Γ′|Δ � B Type]].

(iii) If Γ, x : A,Γ′|Δ � t : B, then [[Γ,Γ′[s/x]|Δ[s/x] � s[tx] : B[s/x]]] = (〈Id, f〉 ·
Id)∗[[Γ, x : A,Γ′|Δ � t : B]].

(ii) Assume [[Γ|Δ � s : A]] = f . Then we have [[Γ|Δ � t[s/y] : B]] = [[Γ|Δ, y : A �
t : B]] ◦ 〈Id, f〉.

Theorem 6.3 Given a fibred dependent DIML-category E : Bop → Cat under the

above interpretation [[]] the following facts hold.

(i) Assume Γ|Δ � Context. Then [[Γ|Δ � Context]] is an object in E([[Γ]]);

(ii) Assume Γ � A Type. Then [[Γ � A Type]] is an object in E([[Γ]]);

(iii) Assume Γ|Δ � t : A. Then [[Γ � t : A]] is a morphism from [[Δ]] to [[A]] in

E([[Γ]]);

(iv) Assume � Γ|Δ = Γ′|Δ′. Then [[Γ|Δ]] = [[Γ′|Δ′]];

(v) Assume Γ � A = B. Then [[Γ � A Type]] = [[Γ � B Type]];

(vi) Assume Γ|Δ � t = s : A. Then [[Γ|Δ � t : A]] = [[Γ|Δ � s : A]].

Proof. The proof proceeds by simultaneous induction over the derivation of all

judgements, using the substitution lemma 6.2. �

Theorem 6.4 If [[Γ|Δ � t : A]] = [[Γ � s : A]] where [[ ]] is the above defined inter-

pretation, for every fibred dependent DIML-category E : Bop → Cat and for every

derived sequents Γ|Δ � t : A and Γ|Δ � s : A then we can derive in the type theory

Γ|Δ � t = s : A.
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Proof. The proof proceeds by constructing a term model from a dependent DIML-

theory. Since the interpretation of this dependent DIML-theory in the syntactic

model is the identity, completeness immediately follows. �

This framework also supports the addition of extensional identity types as left

adjoint to the diagonal. However, the precise formulation of the corresponding type

theory is known to be rather subtle and will be left for further work.

There has been renewed interest in DTT from a more foundational perspective

recently due to Univalent Foundations Program of Homotopy Type Theory [30]. We

do not have much to say about the program, but it is easy to agree with Voevodsky’s

diagnosis (in http://bit.ly/1sLF0i3) that:

There is a substantial difficulty in adding the rules for universes to the rules for

the dependent products, dependent sums and identity types. These three groups

of rules are independent from each other and can be studied separately. The rules

for a universe connect the rules from these three groups to each other making it

necessary to coordinate their interpretations.

Given the work just presented, we would like to add that there seem to be also

modal rules, a fifth class of rules, that appear to be independent from the other sets

of rules as well. For a fragment of these (the box-only S4 modal rules), together

with dependent products we can provide well-behaved type theories as well as well-

behaved categorical semantics in terms of (split indexed) fibrations. We do not

know whether it helps or hinders the Homotopy Type Theory program.

7 Related and Future Work

Awodey and Bauer consider a system of dependent types with a modality, the

so-called “bracket types” in [3]. This unary type constructor [A] was previously

considered, as a way of erasing computational content, and formalizing a notion of

proof irrelevance in dependent type theory. Considered as a modality, the bracket-

ting of types is a very special example, idempotent and with extremely degenerate

type theoretic properties of a diamond modality, definitely not a paradigmatic one.

Awodey and Bauer also mention, as future work, extending the work on Moggi’s

modal type theory to dependent types, which is what we have done here. Xi and

Pfenning started a collection of work on a dependent version of ML (DML [32]),

with the goal of “practical dependent types”. This line of work, where the types

are dependent on a collection of indices, seems very interesting, however our goals

are somewhat orthogonal to theirs.

Recent work of Krishnaswami, Pradic and Benton [22] combines dependent and

linear types into a single system. Like we did here they use the dual context calculus

of Benton to set up this integration. But since they are more interested in the ap-

plication of the calculus to a “proof-theoretic account of imperative programming”

they have to deal with a series of extensions that do not concern us here. We expect

that some of these extensions can be modelled in our framework as well, but have

not attempted to do so, yet.
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There are other ways of modelling dependent types categorically, e.g., categories

with families [13] which are very similar to D-categories. The extension necessary

to model the modalities can be done in the same way for categories with families.

We should also mention the work of Vákár [31], which starts from similar sources

to ours. We actually could have done this kind of modelling in the late nineties,

but instead decided to publish the work on ILT [23], because dependent types were

not our priority at the time, while re-using the libraries already in place for the

simply typed lambda-calculus was, given our goals in the xSLAM project http://

www.cs.bham.ac.uk/research/xslam/xslam.html. Now our priorities are related

to modal types, more than linear types, but the technology is the same and it was

in fact developed for the linear types.

One of our motivations when starting this work was to understand better the

limitations of the Curry-Howard correspondence, when it comes to intensional con-

structors like the modalities. For years we have been involved in the series of work-

shops called “Intuitionistic Modal Logic and Applications” (IMLA) whose goal is

to try to get modal logicians talking to computer scientists, especially functional

programmers, so that instead of re-inventing each other’s wheels they could benefit

from each other’s work. There is nowadays more awareness that the problems are

common, but still very little substantial incorporation of each other’s results. Modal

logicians are bound to say that the kind of constructive necessity discussed in this

note is too limited to be of any use to them. Similarly functional programmers in-

terested in applied dependent types might say that we have not even scratched the

surface of what is required to make these dependent constructive necessity modali-

ties useful to them. This may be so, but we hope that the mathematics developed

might be useful for others seeking to understand how fragments of dependent type

theories relate to each other. At least it shows that for modalities in the style of

S4-necessity, there are no problems either in producing well-behaved type theories

or developing appropriate categorical models.

8 Conclusions

We have described modal type theories (a non-dependent) DIML and a (dependent)

depDIML for the operator corresponding to constructive necessity in the logic. We

showed that these type theories are well-behaved proof-theoretically: their reduc-

tion calculus satisfies subject reduction, is confluent and strongly normalising, with

modular proofs. We provided fibrational models for both of these modal type the-

ories, which we proved sound and complete, using some established and trusted

technology. To sum up, this version of constructive necessity is extremely well-

behaved, as witnessed by the fact that both the type-theoretical properties as well

as the categorical semantics are modular and parallel to each other. Moreover, ex-

plicit substitutions [1] can be added to both dependent and non-dependent versions

of the type theory, with appropriate operational semantics, if desired. We left to

future work to decide whether this modal type theory is useful for Homotopy Type

Theory.
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