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Abstract

This note sets down some facts about natural number objects in the Dialectica category Dial2(Sets).
Natural number objects allow us to model Gödel’s System T in an intrinsically logical fashion. Gödel’s
Dialectica Interpretation is a powerful tool originally used to prove the consistency of arithmetic. It was
surprising (but pleasing) to discover, in the late eighties, that studying the Dialectica Interpretation by
means of categorical proof theory led to models of Girard’s Linear Logic, in the shape of Dialectica categories.
More recently Dialectica Interpretations of (by now established) Linear Logic systems have been studied,
but not extended to System T. In this note we set out to to consider notions of natural number objects
in the original Dialectica category models of the Interpretation. These should lead to intrinsic notions of
linear recursitivity, we hope.
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1 Introduction

This short note describes alternative notions of natural numbers objects in the

Dialectica categories. Dialectica categories arose from an internal characterization

of Gödel’s Dialectica Interpretation, which uses System T, a prototypical system for

primitive and (generally) recursive functions. There has been much work recently

on analyzing the process of computation through the “linear logic perspective”.

This has produced a body of interesting work investigating concepts such as “linear

recursivity”, “linear System T” and “linear primitive functions” ([1,2]), but we think

that more work is needed, if these notions are to truly represent an extension of the

Curry-Howard paradigm. The calculations below can be seen as a preparatory steps

for the discussion of primitive recursion in general monoidal categories, following

the work of [3].

A Natural Numbers Object (or NNO) is an object in a category equipped with

structure giving it properties similar to those of the set of natural numbers N in

the category of Sets. This means that for each prospective natural numbers object

N we need to associate a morphism that plays the role of the constant zero in the

natural numbers and we need to describe a morphism from N to N that plays the

role of the successor function. Moreover these morphisms for zero and successor

need to help us define iterators.

Natural numbers objects have been extensively studied, particularly in the con-

text of toposes, starting with the work of Lawvere ([7]). 5 However, the definition

makes sense in any category with finite products, a cartesian category. The def-

inition also makes sense even in categories with less structure than products, i.e.

in monoidal (closed or not) categories we can define a natural numbers object e.g.

[9,8]. Mackie, Román and Abramsky have the following definition:

Definition 1.1 [8] Let C be a monoidal (closed) category with unit I, a weak natural

numbers object (NNO) is an object N of C together with morphisms zero : I −→ N

and succ : N −→ N such that for any object B of C and morphisms b : I −→ B and

g : B −→ B there exists a morphism h : N −→ B such that the diagrams below

commute:

I
zero � N

succ � N

�
�
�
�
�

b
�

B
�

h

g
� B

�

h

If the morphism h : N −→ B is unique we say that N is a strong NNO or simply

a NNO. If the morphism is not necessarily unique we talk about a weak natural

numbers object.

The paradigmatic example goes as follows: Let N be the usual natural numbers

5 Lawvere writes, on introducing an axiom asserting that NNOs exist, “This [axiom] plays the role of our
axiom of infinity”.
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in the category Sets. Then 1, the singleton set ∗ and N together with the usual zero

and successor functions (written “ζ” and “+1” with ζ(∗) = 0 and +1(n) = n + 1

for all n ∈ N) form a natural number structure over 1 in Sets. Given f : 1 −→ X

and g : X −→ X we have the map h given by h(n) = gn(f(∗)) makes the following

diagram commute and is the unique map doing so.

1
ζ � N

+1 � N

�
�
�
�
�

f
�

X

h

�

g
� X

h

�

2 Dialectica Categories

Dialectica categories were introduced by de Paiva in her thesis [4]. They were

conceived as an internal model of Gödel’s Dialectica Interpretation [6], but turned

out to be also a model of Linear Logic, then a new logical system introduced by

Jean-Yves Girard.

Definition 2.1 Objects of the Dialectica category Dial2(Sets) are triples, A =

(U,X,R), where U and X are sets and R ⊆ U×X is a (usual, set-theoretic) relation.

Given elements u in U and x in X, either they are related by R, R(u, x) = 1 or

they are not and R(u, x) = 0, hence the 2 in the name of the category.

A morphism from A to B = (V, Y, S) is a pair of functions f : U −→ V and

F : Y −→ X such that uRF (y) =⇒ f(u)Sy. We depict morphisms in this note as

X � F
Y

�
�
�
�
�

R

�
�
�
�
�

S

U
f

� V

The category Dial2(Sets) has a symmetric monoidal closed structure, which

makes it a model of (exponential-free) intuitionistic multiplicative linear logic. We

recall the definition of this symmetric monoidal closed structure below.

Definition 2.2 Let A = (U,X,R) and B = (V, Y, S) be objects in Dial2(Sets).

The tensor product of A and B is given by

A⊗B = (U × V,XV × Y U , R⊗ S)

where the relation R ⊗ S is given by (u, v) R⊗ S (f, g) iff uRf(v) and vSg(u).

In particular the unit for this tensor product is the object IDial, (1, 1,=), where

1 = {∗} is a singleton set and = is the identity relation on the singleton set.
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The internal-hom is given by

[A,B] = (V U ×XY , U × Y, [R,S])

where (f, F )[R,S](u, x) iff uRF (y) implies f(u)Sy. The tensor product is adjoint

to the internal-hom, as usual

HomDial(A⊗B,C) ∼= HomDial(A, [B,C])

There is an auxiliary tensor product structure given by

A ◦B = (U × V,X × Y,R ◦ S)

where (u, v)R ◦ S(x, y) iff uRx and vSy. This simpler tensor structure is not the

adjoint of the internal-hom. The unit for this tensor product is also IDial.

The cartesian product is given by A× B = (U × V,X + Y, ch) where X + Y =

X × 0 ∪ Y × 1 and the relation ch (short for ‘choose’) is given by (u, v)ch(x, 0) if

uRx and (u, v)ch(y, 1) if vSy. The unit for this product is (1, ∅, ∅), the terminal

object of Dial2(Sets) .

The category Dial2(Sets) also has coproducts given by the dual construction to

the one above, namely A+B = (U +V,X×Y, ch) and an initial object 0 = (∅, 1, ∅).

3 Natural Numbers Objects in Dial2(Sets)

To investigate iteration and recursion in dialectica categories we would like to define

a natural numbers object in Dial2(Sets). First we need to decide with respect to

which one of the monoidal structures in Dial2(Sets) we will define our prospective

natural numbers object. In principle, we can use either the cartesian structure of

Dial2(Sets) or any one of its tensor structures.

3.1 Using the cartesian structure

The first candidate monoidal structure is the cartesian product in Dial2(Sets). This

means that we would require a map corresponding to zero from the terminal object

(1, ∅, ∅) in Dial2(Sets) to our natural numbers object candidate, say a generic object

like (N,M,E).

Reading from Definition (1), (N,M,E) is a NNO with respect to the carte-

sian structure of Dial2(Sets)if there are maps (z, Z) : (1, ∅, ∅) −→ (N,M,E) and

(s, S) : (N,M,E) −→ (N,M,E) such that for any object (X,Y,R) and any pair

of morphisms (f, F ) : (1, ∅, ∅) −→ (X,Y,R) and (g,G) : (X,Y,R) −→ (X,Y,R)

there exists some (unique) (h,H) : (N,M,E) −→ (X,Y,R) such that the following

diagram, which we refer to below as the ‘main diagram,’ commutes.
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∅ � Z
M � S

M

�
�
�
�
�

∅
��
�
�
�
�

F

�
�
�
�
�

E

�
�
�
�
�

E

1
z

� N
s

�

H

	

N

�
�
�
�
�
�
�
�
�
�
�

f

�

�
�
�
�
�

Y � G
Y

H

	

�
�
�
�
�

R
�
�
�
�
�

R

X

h

�

g
� X

�

h

Proposition 3.1 The category Dial2(Sets) has a (trivial) NNO with respect to its

cartesian structure, given by (N, ∅, ∅).

Proof. It is clear that demands on the first co-ordinate of a NNO in Dial2(Sets)

are exactly those as for sets. Consequently, any possible NNO for Dial2(Sets) is of

the form N = (N,M,E) for some set M and some relation E ⊆ N ×M , where N

is the usual natural numbers object in Sets, with the usual zero constant and the

usual successor function on natural numbers.

Since we are using the cartesian structure of Dial2(Sets), then there must exist

a morphism in Dial2(Sets) zero = (z, Z) : 1 → N with two components, z : 1 → N

(as in Sets) and Z : M → 0. But since the only map into the empty set in the

category of Sets is the empty map, we would conclude that M is empty and so is

E as this is a relation in the product N× ∅.
This trivial NNO works, because given any object B of Dial2(Sets) and any

maps f : 1 → B and g : B → B, we can find a unique map h : N → B making all

the necessary NNO diagrams commute. In the first coordinate h is given by the

map that exists for N as a NNO in Sets and in the second coordinate this is simply

the empty map. �

Note that the existence of the map 1 → B in Dial2(Sets) means that B the

generic object of the form (X,Y,R) has Y equal to the empty set as its second

coordinate and hence R is also the empty relation.

This triviality result is expected, since the ‘main’ structure of the category

Dial2(Sets) is the tensor that makes it a symmetric monoidal closed category, not

its cartesian structure. This we discuss next.

V. de Paiva et al. / Electronic Notes in Theoretical Computer Science 305 (2014) 53–65 57



3.2 Using a monoidal (closed) structure

Tensor products, unlike cartesian products, are not unique up to isomorphism and

the category Dial2(Sets) has (at least) two prominent tensor products, besides

categorical products and coproducts. These tensor products (in Definition 3) share

a common unit, the object (1, 1,=), which we could use to obtain a natural number

object, as in the monoidal generalization of NNO in Definition 1. Instead of doing

this, which in principle would mean investigating all possible tensor products in

Dial2(Sets), we will instead go back to the notion of a Peano-Lawvere category, as

introduced by Burroni in [3].

Burroni reminds us that the existence of a NNO in a topos E , corresponding to

Lawvere’s “infinity axiom”, only requires the ambient category to possess a terminal

object, but the full force of the axiom comes about from the other structure of the

topos as well. There are many reasons to formulate a notion of “infinity axiom” in a

category where we do not make any other assumptions other than that the ambient

is a category E. One of these reasons is that the notions of integer, of recursiviness,

of program, of machine, etc.. are notions that one should be able to develop in a

uniform way in any mathematical ‘universe’ E, without assuming other properties of

E, because these other properties are not supposed to have any infinitary meaning.

Another reason is that there are categories that are very far from being a topos, but

that nonetheless satisfy the Peano-Lawvere axiom, or better, a form of this axiom

adapted to the absence of hypotheses about the existence of a final object and of

cartesian products .

From our part we interested in categories where the main logical structures are

monoidal, instead of cartesian, signifying a logic that is resource conscious, but

we agree with Burroni that the axiom about infinity should be independent from

whether the basic logic is cartesian or monoidal.

Definition 3.2 [3] The axiom of Peano-Lawvere says that for any object X in a

category E, there is a diagram of the form

X
zX� NX

sX� NX

with the universal property that for any diagram of the form

X
f � Y

g � Y

there exists h : NX → Y such that the following diagram commutes

X
zX� NX

sX� NX

�
�
�
�
�

f
�

Y

h

�

g
� Y

�

h
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If a category satisfies this axiom, we say the category is a Peano-Lawvere (PL)

category. Is Dial2(Sets) a PL-category?

Reading from the definition above, Dial2(Sets) is a PL-category if given any

object (A,B,C) of Dial2(Sets) there is an object of Dial2(Sets) (N,M,E) and

maps (z, Z) : (A,B,C) −→ (N,M,E) and (s, S) : (N,M,E) −→ (N,M,E) such

that for any object of Dial2(Sets) (X,Y,R) together with a pair of morphisms

(f, F ) : (A,B,C) −→ (X,Y,R) and (g,G) : (X,Y,R) −→ (X,Y,R) there exists

some (unique) map in Dial2(Sets) (h,H) : (N,M,E) −→ (X,Y,R) such that the

following diagram commutes.

B � Z
M � S

M

�
�
�
�
�

C
��
�
�
�
�

F

�
�
�
�
�

E

�
�
�
�
�

E

A
z

� N
s

�

H

	

N

�
�
�
�
�
�
�
�
�
�
�

f

�

�
�
�
�
�

Y � G
Y

H

	

�
�
�
�
�

R
�
�
�
�
�

R

X

h

�

g
� X

�

h

Trying to simplify this picture for the case where the main tensor structure of

Dial2(Sets) as well as its unit (1, 1,=) are used, we obtain: If N = (N,M,E)

is a proposed NNO in Dial2(Sets) then there must exist morphisms zero =

(z, Z) : (1, 1,=) → (N,M,E) and succ = (s, S) : (N,M,E) → (N,M,E) such that

the diagrams below commute.
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1 � Z
M � S

M

�
�
�
�
�

=
��
�
�
�
�

F

�
�
�
�
�

E

�
�
�
�
�

E

1
z

� N
s

�

H

	

N

�
�
�
�
�
�
�
�
�
�
�

f

�

�
�
�
�
�

Y � G
Y

H

	

�
�
�
�
�

R
�
�
�
�
�

R

X

h

�

g
� X

�

h

Proposition 3.3 The category Dial2(Sets) has a (trivial) weak NNO with respect

to its monoidal closed structure described, given by (N, 1,N× 1).

Proof. As before, the demands on the first co-ordinate of a NNO in Dial2(Sets)

are exactly those as for sets. Consequently, any possible NNO for Dial2(Sets) is of

the form N = (N,M,E) for some set M and some relation E ⊆ N ×M , where N

is the usual natural numbers object in Sets, with the usual zero constant and the

usual successor function on natural numbers.

Given that we are using as the unit for the tensor the object (1, 1 =) the mor-

phism zero has two components, z : 1→ N (as in Sets) and Z : M → 1 on the top

of the diagram. The map Z has to be the unique map !M : M → 1 sending all m’s

in M to the singleton set ∗, as this is what it means to say that 1 is the terminal

object in Sets. The morphism succ : N → N in Dial2(Sets) also has two compo-

nents (s, S), where s : N→ N is the usual successor function in N, and S : M →M

is to be determined, satisfying some equations.

We need to consider the objects B of Dial2(Sets) for which there are maps

(f, F ) : I → B and (g,G) : B → B. Every object B in Dial2(Sets) has at least one

map to itself, namely the identity, but not every object in Dial2(Sets) has a map

(f, F ) : I → B.

Fact 1. If there is a map (f, F ) : I → B in Dial2(Sets) for a generic object B

of the form (X,Y,R) then there exists x0 in X such for all y in Y we have x0Ry.
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Proof. By definition of maps in Dial2(Sets), we must have

1 � =
1

X

f

�
�

R
Y

	

F =!

where the map in the left f simply picks up an element ofX and the map on the right

F is the unique terminal map, hence ∀∗ ∈ 1, ∀y ∈ Y , ∗ = ∗ implies x0 = f(∗)Ry. �

Fact 2. If there is a NNO in Dial2(Sets) of the form (N,M,E), where M is

the singleton set 1, then S : 1→ 1 is the identity on 1 and E relates every n in N to ∗.

Proof. If N = (N, 1, E) is a NNO in Dial2(Sets) then the map zero =

(z, Z) : I → N has to be the zero map in N together with the terminal map in

1 and the succ = (s, S) : N → N consists of the usual successor function on the

integers and S : 1→ 1 has to be the identity on 1.

The fact that (z, Z) is a map of Dial2(Sets) gives us the diagram

1 � =
1

N

0

�
�

E
1

	

Z = id1

and the condition says for all ∗ in 1, if ∗ = Z(∗) then 0(∗)E∗. Hence E must be

such that 0E∗.
The fact that (s, S) is map of Dial2(Sets) gives us the diagram

N � E
1

N

s

�
�

E
1

	

S

and the condition on morphisms says for all n in N and for all ∗ in 1, if nES∗ then
n + 1 = s(n)E∗. But S is the identity on 1, ie S∗ = ∗, so if nES∗ ⇒ n + 1E∗,
which is just what we need to prove that E relates every n in N to ∗. �

Back to the proof of the proposition we now have:
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The object of Dial2(Sets) of the form (N, 1, E), where E relates every n in N to ∗,
together with morphisms zero = (0, id1) : I → N and succ = (+1, id1) : N → N is

a weak NNO in Dial2(Sets).

Let B be an object (X,Y,R) of Dial2(Sets) such that there are maps (f, F ) : I →
B and (g,G) : B → B. To prove N = (N, 1, E), where nE∗ for all n in N is a weak

NNO, we must be able to define a map (h,H) : N → B such that the main NNO

diagram commutes.

It is clear that h : N → X can be defined using the fact that N is a NNO in

Sets. It is clear that we must take H : Y → 1 as the terminal map on Y . We need

to check that all the required conditions are satisfied.

The required conditions amount to showing that

(i) the map (h,H) is a map of Dial2(Sets);

(ii) the triangle commutes, and

(iii) the square commutes in the diagram that we repeat again below to facilitate

the reading of this note.

1 � Z = id1
1 � S = id1

1

�
�
�
�
�

=
��
�
�
�
�

F =!Y

�
�
�
�
�

E

�
�
�
�
�

E

1
z = 0

� N
s = +1

�

H

	

N

�
�
�
�
�
�
�
�
�
�
�

f

�

�
�
�
�
�

Y � G
Y

H =!Y

	

�
�
�
�
�

R
�
�
�
�
�

R

X

h

�

g
� X

�

h

We deal with item (i) last as it is more involved.

Commutativity of the triangle diagram (ii) in Dial2(Sets) is easy. Note that

the diagram in Dial2(Sets)

1
zero � N

�
�
�
�
�

f
�

B
�

h
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corresponds to two triangles in Sets and in our main diagram:

1
0 � N

�
�
�
�
�

f
�

X
�

h

1 � id1
1

��
�
�
�
�

F =!

Y

	

H =!

The left triangle is satisfied because N is a NNO in Sets and the right triangle is

trivially satisfied, because 1 is a terminal object.

The Dial2(Sets) condition on morphisms is also satisfied:

1 � =
1

N

0

�
�

E
1

	

id1

X

h

�
�

R
Y

	

!

The first square says that for all ∗ ∈ 1, ∗ ∈ 1, if ∗ = ∗ then 0(∗)E∗ or 0E∗ which
is true. The second square says for all n ∈ N, for all y ∈ Y if nE ∗ (y) then h(n)Ry,

the condition on (h, !) being a map in Dial2(Sets). If both squares commute then

the rectangle says for all ∗ in 1 and for all y ∈ Y , if ∗ = ∗ then f(∗)Ry, which we

know.

The square relating the successor function to the function defined by iteration

h (item (iii)) commutes.

N
succ � N

B

h

�

g
� B

�

h
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This corresponds to the squares:

N
+1 � N

X
�

h

g
� X

�

h

1 �S = id1
1

Y

	

!

�
G

Y

	

!

As before the left square is true by definition of NNO, we choose h so that this

commutes and the right square commutes because we are using the terminal map.

Now to show that the proposed map (h,H) is a map in Dial2(Sets) we have to

work a little. The map (h,H) is a map in Dial2(Sets) if the condition for all m

in N, for all y in Y , if mEH(y) then h(m)Ry is satisfied. Since H(y) = ∗ and we

know mE∗ for all m in N, we need to show h(m)Ry for all m ∈ N and all y in Y .

If m = 0 we need to show h(0)Ry for all y ∈ Y . But since N is the NNO in Sets

we know that

1
0 � N

+1 � N

�
�
�
�
�

f
�

X
�

h

g
� X

�

h

commutes, hence h(0) = f(∗) and h(m + 1) = g(h(m)). But since B = (X,Y,R)

is an object that has a map (f, F ) : I → B we know (Fact 1) that there exists

x0 = f(∗) such that f(∗)Ry for all y in Y and hence h(0) = f(∗)Ry for all y ∈ Y .

If m is not zero, then m = n+ 1 and h(n+ 1) = g(h(n)) by the definition of h

in Sets. But B is an object of Dial2(Sets) equipped with a map (g,G) : B → B,

which means that there exist g : X → X and G : Y → Y in Sets such that for all

x ∈ X and for all y ∈ Y , if xRG(y) then g(x)Ry. To show that h(n)Ry, since we

know that h(0)Ry we need to show that if h(n)Ry for all y ∈ Y then h(n + 1)Ry

for all y ∈ Y .

But if h(n)Ry for all y ∈ Y , then in particular h(n)RG(y′) for all y’s that happen
to be in the range of G, that is if y happens to be Gy′. In this case g(h(n))Ry′,
that is h(n+ 1)Ry′. �

Summing up: We obtain a degenerate weak NNO, where in the first coordinate

we have business as usual in Sets and in the second coordinate we have simply the

singleton set 1 and terminal maps.

4 Conclusions

We expected to find a NNO in the dialectica categories, with iteration and recursion

as usual in the first coordinate, but co-recursion/co-iteration in the second coordi-
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nate, following the pattern in dialectica categories of business as usual in the first

coordinate and the dual case of the usual in the second coordinate. It is disappoint-

ing to obtain only a ‘degenerate’ NNO as above, where the second coordinate is

trivial. Maybe we have not got the right level of generality.

A remark on related work: Dialectica objects are similar to Chu spaces, which

in turn are very similar to Vicker’s topological systems[11]. But morphisms are very

different and as a result, the structure of the categories is fairly different too. Some

comparisons are drawn in [5].

It is well known (and a nice description can be found in [10]) that natural number

algebras 1 → N ← N are in bijective correspondence with F -algebras where F is

the endofunctor F (X) = 1+X and that the initial algebra for this functor in Set is

indeed the usual natural numbers, where we have an isomoprhism N ∼= 1+N . Since

this is an isomorphism we could also see it as an F -coalgebra, but this is not final

in the category of sets. As Plotkin remarks this coalgebra is final in the category of

sets and partial functions Pfn. Can we change our working underlying category of

Dial2(Sets) so that a non-trivial NNO can be constructed? Co-recursion is not as

well-understood as recursion, in particular we know of no work on co-induction in

a linear (or monoidal) situation. More work seems required.

References

[1] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. Linear recursive functions. In
Rewriting, Computation and Proof, pages 182–195. Springer, 2007.

[2] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. Gödels system t revisited. Theoretical
Computer Science, 411(11):1484–1500, 2010.
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